scholarly journals Influence of Anodizing Parameters on Surface Morphology and Surface-Free Energy of Al2O3 Layers Produced on EN AW-5251 Alloy

Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 695 ◽  
Author(s):  
Marek Bara ◽  
Mateusz Niedźwiedź ◽  
Władysław Skoneczny

The paper presents the influence of the surface anodizing parameters of the aluminum alloy EN AW-5251 on the physicochemical properties of the oxide layers produced on it. Micrographs of the surface of the oxide layers were taken using a scanning electron microscope (SEM). The chemical composition of cross-sections from the oxide layers was studied using energy dispersive spectroscopy (EDS). The phase structure of the Al2O3 layers was determined by the pattern method using X-ray diffractometry (XRD). The nanomorphology of the oxide layers were analyzed based on microscopic photographs using the ImageJ 1.50i program. The energetic state of the layers was based on the surface-free energy (SFE), calculated from measurements of contact angles using the Owens-Wendt method. The highest surface-free energy value (49.12 mJ/m2) was recorded for the sample produced at 293 K, 3 A/dm2, in 60 min. The lowest surface-free energy value (31.36 mJ/m2) was recorded for the sample produced at 283 K, 1 A/dm2, in 20 min (the only hydrophobic layer). The highest average value nanopore area (2358.7 nm2) was recorded for the sample produced at 303 K, 4 A/dm2, in 45 min. The lowest average value nanopore area (183 nm2) was recorded for the sample produced at 313 K, 1 A/dm2, in 20 min.

2018 ◽  
Vol 8 (11) ◽  
pp. 2251 ◽  
Author(s):  
Władysław Skoneczny ◽  
Mateusz Niedźwiedź ◽  
Marek Bara

Nanotechnology is currently a very promising field of materials science. One of the most recent directions of research in this field is the nanotechnology of the upper layers for applications in engineering kinematic systems. The paper presents the influence of the production parameters of Al2O3 oxide layers on an EN AW-5251 aluminum alloy substrate on the nanostructure, nanomorphology of these layers, and their energy condition. The energy level was determined on the basis of Surface-Free Energy (SFE), determined from wettability (contact) angle measurements using the Owens-Wendt method. Using systematic scanning, the geometric structure of the surface (SGS) was determined for the produced layers. By means of a scanning electron microscope (SEM), the surface morphology and structure, and the chemical composition of the layers (EDS) were analyzed. Computer analysis of the surface nanoporosity was performed by means of the ImageJ 1.50i program. It was noted in the investigations that the oxide layer production parameters induce changes in the surface free energy of the layers. Changes in the nanomorphology of the upper layers were also observed, depending on the anodizing parameters.


2021 ◽  
pp. 002203452110181
Author(s):  
A.A. Balhaddad ◽  
I.M. Garcia ◽  
L. Mokeem ◽  
M.S. Ibrahim ◽  
F.M. Collares ◽  
...  

Cervical composites treating root carious and noncarious cervical lesions usually extend subgingivally. The subgingival margins of composites present poor plaque control, enhanced biofilm accumulation, and cause gingival irritation. A potential material to restore such lesions should combine agents that interfere with bacterial biofilm development and respond to acidic conditions. Here, we explore the use of new bioresponsive bifunctional dental composites against mature microcosm biofilms derived from subgingival plaque samples. The designed formulations contain 2 bioactive agents: dimethylaminohexadecyl methacrylate (DMAHDM) at 3 to 5 wt.% and 20 wt.% nanosized amorphous calcium phosphate (NACP) in a base resin. Composites with no DMAHDM and NACP were used as controls. The newly formulated 5% DMAHDM–20% NACP composite was analyzed by micro-Raman spectroscopy and transmission electron microscopy. The wettability and surface-free energy were also assessed. The inhibitory effect on the in vitro biofilm growth and the 16S rRNA gene sequencing of survival bacterial colonies derived from the composites were analyzed. Whole-biofilm metabolic activity, polysaccharide production, and live/dead images of the biofilm grown over the composites complement the microbiological assays. Overall, the designed formulations had higher contact angles with water and lower surface-free energy compared to the commercial control. The DMAHDM-NACP composites significantly inhibited the growth of total microorganisms, Porphyromonas gingivalis, Prevotella intermedia/nigrescens, Aggregatibacter actinomycetemcomitans, and Fusobacterium nucleatum by 3 to 5-log ( P < 0.001). For the colony isolates from control composites, the composition was typically dominated by the genera Veillonella, Fusobacterium, Streptococcus, Eikenella, and Leptotrichia, while Fusobacterium and Veillonella dominated the 5% DMAHDM–20% NACP composites. The DMAHDM-NACP composites contributed to over 80% of reduction in metabolic and polysaccharide activity. The suppression effect on plaque biofilms suggested that DMAHDM-NACP composites might be used as a bioactive material for cervical restorations. These results may propose an exciting path to prevent biofilm growth and improve dental composite restorations’ life span.


2014 ◽  
Vol 20 (5) ◽  
pp. 1534-1543 ◽  
Author(s):  
Annalaura Restivo ◽  
Ilaria Degano ◽  
Erika Ribechini ◽  
Josefina Pérez-Arantegui ◽  
Maria Perla Colombini

Abstract:An innovative approach, combining field-emission scanning electron microscopy (FESEM) with energy dispersive X-ray spectroscopy (EDX) analysis, is presented to investigate the degradation mechanisms affecting tannin-dyed wool. In fact, tannin-dyed textiles are more sensitive to degradation then those dyed with other dyestuffs, even in the same conservation conditions.FESEM-EDX was first used to study a set of 48 wool specimens (artificially aged) dyed with several raw materials and mordants, and prepared according to historical dyeing recipes. EDX analysis was performed on the surface of wool threads and on their cross-sections. In addition, in order to validate the model formulated by the analysis of reference materials, several samples collected from historical and archaeological textiles were subjected to FESEM-EDX analysis.FESEM-EDX investigations enabled us to reveal the correlation between elemental composition and morphological changes. In addition, aging processes were clarified by studying changes in the elemental composition of wool from the protective cuticle to the fiber core in cross-sections. Morphological and elemental analysis of wool specimens and of archaeological and historical textiles showed that the presence of tannins increases wool damage, primarily by causing a sulfur decrease and fiber oxidation.


2011 ◽  
Vol 239-242 ◽  
pp. 2942-2945 ◽  
Author(s):  
Jin Chen ◽  
Li Li Wang ◽  
Guang Cheng Yang ◽  
Zhi Qiang Qiao ◽  
Fu De Nie

Flower-like LLM-105 three-dimensional microstructures, which consisted of LLM-105 microrods with rectangular cross-sections, were prepared via a smiple template- and surfactant-free recrystallization process using [Bmim]CF3SO3as good solvent and water as poor solvent. A tentative mechanism for the growth of the flower-like LLM-105 three-dimensional microstructures was proposed on the basis of the analysis of X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). Comparing with LLM-105 raw material, the thermal decomposition took place at lower temperature and the weight loss has increased for the flower-like three-dimensional microstructures in the differential scanning calorimetric/thermogravimetric (DSC/TG) measurements.


2013 ◽  
Vol 21 (1) ◽  
pp. 149-160 ◽  
Author(s):  
I. M. Zougrou ◽  
M. Katsikini ◽  
F. Pinakidou ◽  
E. C. Paloura ◽  
L. Papadopoulou ◽  
...  

Earlymost Villafranchian fossil bones of an artiodactyl and a perissodactyl from the Milia excavation site in Grevena, Greece, were studied in order to evaluate diagenetic effects. Optical microscopy revealed the different bone types (fibro-lamellar and Haversian, respectively) of the two fragments and their good preservation state. The spatial distribution of bone apatite and soil-originating elements was studied using micro-X-ray fluorescence (µ-XRF) mapping and scanning electron microscopy. The approximate value of the Ca/P ratio was 2.2, as determined from scanning electron microscopy measurements. Bacterial boring was detected close to the periosteal region and Fe bearing oxides were found to fill bone cavities,e.g.Haversian canals and osteocyte lacunae. In the perissodactyl bone considerable amounts of Mn were detected close to cracks (the Mn/Fe weight ratio takes values up to 3.5). Goethite and pyrite were detected in both samples by means of metallographic microscopy. The local Ca/P ratio determined with µ-XRF varied significantly in metal-poor spots indicating spatial inhomogeneities in the ionic substitutions. XRF line scans that span the bone cross sections revealed that Fe and Mn contaminate the bones from both the periosteum and medullar cavity and aggregate around local maxima. The formation of goethite, irrespective of the local Fe concentration, was verified by the FeK-edge X-ray absorption fine structure (XAFS) spectra. Finally, SrK-edge extended XAFS (EXAFS) revealed that Sr substitutes for Ca in bone apatite without obvious preference to the Ca1or Ca2unit-cell site occupation.


2015 ◽  
Vol 40 (1) ◽  
pp. 87-95 ◽  
Author(s):  
Y Shimizu ◽  
A Tsujimoto ◽  
T Furuichi ◽  
T Suzuki ◽  
K Tsubota ◽  
...  

SUMMARY Objective We examined the influence of light intensity on surface free energy characteristics and dentin bond strength of dual-cure direct core build-up resin systems. Methods Two commercially available dual-cure direct core build-up resin systems, Clearfil DC Core Automix with Clearfil Bond SE One and UniFil Core EM with Self-Etching Bond, were studied. Bovine mandibular incisors were mounted in acrylic resin and the facial dentin surfaces were wet ground on 600-grit silicon carbide paper. Adhesives were applied to dentin surfaces and cured with light intensities of 0 (no irradiation), 200, 400, and 600 mW/cm2. The surface free energy of the adhesives (five samples per group) was determined by measuring the contact angles of three test liquids placed on the cured adhesives. To determine the strength of the dentin bond, the core build-up resin pastes were condensed into the mold on the adhesive-treated dentin surfaces according to the methods described for the surface free energy measurement. The resin pastes were cured with the same light intensities as those used for the adhesives. Ten specimens per group were stored in water maintained at 37°C for 24 hours, after which they were shear tested at a crosshead speed of 1.0 mm/minute in a universal testing machine. Two-way analysis of variance (ANOVA) and a Tukey-Kramer test were performed, with the significance level set at 0.05. Results The surface free energies of the adhesive-treated dentin surfaces decreased with an increase in the light intensity of the curing unit. Two-way ANOVA revealed that the type of core build-up system and the light intensity significantly influence the bond strength, although there was no significant interaction between the two factors. The highest bond strengths were achieved when the resin pastes were cured with the strongest light intensity for all the core build-up systems. When polymerized with a light intensity of 200 mW/cm2 or less, significantly lower bond strengths were observed. Conclusions The data suggest that the dentin bond strength of core build-up systems are still affected by the light intensity of the curing unit, which is based on the surface free energy of the adhesives. On the basis of the results and limitations of the test conditions used in this study, it appears that a light intensity of &gt;400 mW/cm2 may be required for achieving the optimal dentin bond strength.


Sign in / Sign up

Export Citation Format

Share Document