scholarly journals Magnesium Filled Polylactic Acid (PLA) Material for Filament Based 3D Printing

Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 719 ◽  
Author(s):  
Iulian Antoniac ◽  
Diana Popescu ◽  
Aurelian Zapciu ◽  
Aurora Antoniac ◽  
Florin Miculescu ◽  
...  

The main objective of this research is to prove the viability of obtaining magnesium (Mg) filled polylactic acid (PLA) biocomposites as filament feedstock for material extrusion-based additive manufacturing (AM). These materials can be used for medical applications, thus benefiting of all the advantages offered by AM technology in terms of design freedom and product customization. Filaments were produced from two PLA + magnesium + vitamin E (α-tocopherol) compositions and then used for manufacturing test samples and ACL (anterior cruciate ligament) screws on a low-cost 3D printer. Filaments and implant screws were characterized using SEM (scanning electron microscopy), FTIR (fourier transform infrared spectrometry), and DSC (differential scanning calorimetry) analysis. Although the filament manufacturing process could not ensure a uniform distribution of Mg particles within the PLA matrix, a good integration was noticed, probably due to the use of vitamin E as a precursor. The results also show that the composite biomaterials can ensure and maintain implant screws structural integrity during the additive manufacturing process.

BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 7954-7964
Author(s):  
Diego Gomez-Maldonado ◽  
Maria Soledad Peresin ◽  
Christina Verdi ◽  
Guillermo Velarde ◽  
Daniel Saloni

As the additive manufacturing process gains worldwide importance, the need for bio-based materials, especially for in-home polymeric use, also increases. This work aims to develop a composite of polylactic acid (PLA) and nanofibrillated cellulose (NFC) as a sustainable approach to reinforce the currently commercially available PLA. The studied materials were composites with 5 and 10% NFC that were blended and extruded. Mechanical, structural, and thermal characterization was made before its use for 3D printing. It was found that the inclusion of 10% NFC increased the modulus of elasticity in the filaments from 2.92 to 3.36 GPa. However, a small decrease in tensile strength was observed from 55.7 to 50.8 MPa, which was possibly due to the formation of NFC aggregates in the matrix. This work shows the potential of using PLA mixed with NFC for additive manufacturing.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1946 ◽  
Author(s):  
Héctor García-Martínez ◽  
Ernesto Ávila-Navarro ◽  
Germán Torregrosa-Penalva ◽  
Alberto Rodríguez-Martínez ◽  
Carolina Blanco-Angulo ◽  
...  

This work presents a study on the implementation and manufacturing of low-cost microwave electronic circuits, made with additive manufacturing techniques using fused deposition modeling (FDM) technology. First, the manufacturing process of substrates with different filaments, using various options offered by additive techniques in the manufacture of 3D printing parts, is described. The implemented substrates are structurally analyzed by ultrasound techniques to verify the correct metallization and fabrication of the substrate, and the characterization of the electrical properties in the microwave frequency range of each filament is performed. Finally, standard and novel microwave filters in microstrip and stripline technology are implemented, making use of the possibilities offered by additive techniques in the manufacturing process. The designed devices were manufactured and measured with good results, which demonstrates the possibility of using low-cost 3D printers in the design process of planar microwave circuits.


1992 ◽  
Vol 55 (11) ◽  
pp. 430-434 ◽  
Author(s):  
M W Cunliffe

The knee brace described was developed to give a low cost knee brace of sufficient rigidity, quality of fit and comfort to the patient's leg. The brace is custom moulded from thermoplastic material and incorporates a ready-made adjustable knee hinge. It has a colour coordinated covering of beige towelling and securing straps of red Velcro, the latter being attractive to the younger patient who has been the main user. Its main use to date has been application following a Leeds-Keio anterior cruciate ligament implant at the Royal Preston Hospital. The study comprised 30 patients.


2009 ◽  
Vol 46 (5) ◽  
pp. 599-606 ◽  
Author(s):  
Tyler Barker ◽  
Scott W. Leonard ◽  
Roy H. Trawick ◽  
Thomas B. Martins ◽  
Carl R. Kjeldsberg ◽  
...  

2016 ◽  
Vol 32 (3) ◽  
pp. 248-253 ◽  
Author(s):  
Boyi Dai ◽  
Mitchell L. Stephenson ◽  
Samantha M. Ellis ◽  
Michael R. Donohue ◽  
Xiaopeng Ning ◽  
...  

Increased knee flexion and decreased knee valgus angles and decreased impact ground reaction forces (GRF) are associated with decreased anterior cruciate ligament (ACL) loading during landing. The purpose of this study was to determine the effect of tactile feedback provided by a simple device on knee flexion and valgus angles and impact GRF during landing. Kinematic and kinetic data were collected when 28 participants performed baseline, training, and evaluation jump-landing trials. During the training trials, the device was placed on participants’ shanks so that participants received tactile feedback when they reached a peak knee flexion angle of a minimum of 100°. During the evaluation trials, participants were instructed to maintain the movement patterns as they learned from the training trials. Participants demonstrated significantly (P < .008) increased peak knee flexion angles, knee flexion range of motion during early landing (first 100 ms of landing) and stance time, decreased impact posterior and vertical GRF during early landing and jump height, and similar knee valgus angles during the evaluation trials compared with the baseline trials. Immediately following training with tactile feedback, participants demonstrated landing patterns associated with decreased ACL loading. This device may have advantages in application because it provides low-cost, independent, and real-time feedback.


2019 ◽  
Vol 952 ◽  
pp. 153-162 ◽  
Author(s):  
Šimon Lecký ◽  
Stefan Václav ◽  
Dávid Michal ◽  
Róbert Hrušecký ◽  
Peter Košťál ◽  
...  

Paper focuses on additive manufacturing of assembly tool for hole selection. One of the most important part in design and optimization process in additive manufacturing for assembly tool is material selection and technology. In this case was chosen plastic material know as poly-lactic-acid. Polylactic acid has low shrinkage and huge potential in assembly tooling and assembly fixture manufacturing. Main benefits are in use of additive manufacturing for this purpose because of huge manufacturing variability and time savings in case of frequent design changes. From filament fused fabrication technology stand point is important to determine right manufacturing orientation of part. Main material benefit is bio-degradability and recyclability. Current trend in manufacturing is bio materials, clean manufacturing and ecofriendly products. Correct orientation of assembly tool will optimize manufacturing process in one way. Article is aimed on manufacturing precision in each orientation of part on build late. With right orientation of part in additive manufacturing process is determined exact precision of assembly tool manufacturing. For measurement was used coordinate-measuring machine. In this case measurements and precision checking are made only in exact spots where is needed the most precise distance


2009 ◽  
Vol 7 (47) ◽  
pp. 895-903 ◽  
Author(s):  
Sang-Kuy Han ◽  
Ruth Seerattan ◽  
Walter Herzog

The aims of this study were (i) to quantify chondrocyte mechanics in fully intact articular cartilage attached to its native bone and (ii) to compare the chondrocyte mechanics for cells in healthy and early osteoarthritis (OA) tissue. We hypothesized that cells in the healthy tissue would deform less for given articular surface pressures than cells in the early OA tissue because of a loss of matrix integrity in early OA and the associated loss of structural integrity that is thought to protect chondrocytes. Chondrocyte dynamics were quantified by measuring the deformation response of the cells to controlled loading of fully intact cartilage using a custom-designed confocal indentation system. Early OA was achieved nine weeks following transection of the anterior cruciate ligament (ACL) in rabbit knees. Experiments were performed on the retropatellar cartilage of early OA rabbit knees (four joints and 48 cells), the corresponding intact contralateral control knees (four joints and 48 cells) and knees from normal control rabbits (four joints and 48 cells). Nine weeks following ACL transection, articular cartilage of the experimental joints showed substantial increases in thickness, and progression towards OA as assessed using histological grading. Local matrix strains in the superficial zone were greater for the experimental (38 ± 4%) compared with the contralateral (27 ± 5%) and normal (28 ± 4%) joints ( p = 0.04). Chondrocyte deformations in the axial and depth directions were similar during indentation loading for all experimental groups. However, cell width increased more for the experimental cartilage chondrocytes (12 ± 1%) than the contralateral (6 ± 1%) and normal control chondrocytes (6 ± 1%; p < 0.001). On average, chondrocyte volume increased with indentation loading in the early OA cartilage (8 ± 3%, p = 0.001), while it decreased for the two control groups (−8 ± 2%, p = 0.002 for contralateral and −8 ± 1%, p = 0.004 for normal controls). We conclude from these results that our hypothesis of cell deformations in the early OA tissue was only partially supported: specifically, changes in chondrocyte mechanics in early OA were direction-specific with the primary axial deformations remaining unaffected despite vastly increased average axial matrix deformations. Surprisingly, chondrocyte deformations increased in early OA in specific transverse directions which have received little attention to date but might be crucial to chondrocyte signalling in early OA.


Sign in / Sign up

Export Citation Format

Share Document