scholarly journals Parametric Modeling of Biomimetic Cortical Bone Microstructure for Additive Manufacturing

Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 913 ◽  
Author(s):  
José Robles-Linares ◽  
Erick Ramírez-Cedillo ◽  
Hector Siller ◽  
Ciro Rodríguez ◽  
J. Martínez-López

In this work we present a novel algorithm for generating in-silico biomimetic models of a cortical bone microstructure towards manufacturing biomimetic bone via additive manufacturing. The software provides a tool for physicians or biomedical engineers to develop models of cortical bone that include the inherent complexity of the microstructure. The correspondence of the produced virtual prototypes with natural bone tissue was assessed experimentally employing Digital Light Processing (DLP) of a thermoset polymer resin to recreate healthy and osteoporotic bone tissue microstructure. The proposed tool was successfully implemented to develop cortical bone structure based on osteon density, cement line thickness, and the Haversian and Volkmann channels to produce a user-designated bone porosity that matches within values reported from literature for these types of tissues. Characterization of the specimens using a Scanning Electron Microscopy with Focused Ion Beam (SEM/FIB) and Computer Tomography (CT) revealed that the manufacturability of intricated virtual prototype is possible for scaled-up versions of the tissue. Modeling based on the density, inclination and size range of the osteon and Haversian and Volkmann´s canals granted the development of a dynamic in-silico porosity (13.37–21.49%) that matches with models of healthy and osteoporotic bone. Correspondence of the designed porosity with the manufactured assessment (5.79–16.16%) shows that the introduced methodology is a step towards the development of more refined and lifelike porous structures such as cortical bone. Further research is required for validation of the proposed methodology model of the real bone tissue and as a patient-specific customization tool of synthetic bone.

2018 ◽  
Vol 3 (2) ◽  
pp. 24-33
Author(s):  
Filipa Pinto de Oliveira

consider to be a synonymous of additive manufacturing has made its way into the medical field, not only manufacturing medical appliances, study models or building prosthetics. The demand for bone substitution surgeries is growing every year, due to the increase in pathologies affecting bone structure (both traumatic and not traumatic). Nowadays with the possibility of three-dimensional printers becoming bioprinters, engineered bone tissue is starting to become a reality. The aim of this paper is to give the reader an overview of the work done in the last few years towards the advance of three-dimensional printing methods for engineered bone tissue. This paper is divided into six parts, an introduction, then presentation and discussion of the various printing methods with special focus on additive manufacturing (AM), then of bioprinting technologies, further directions of these technologies are considered and a conclusion is done.


Author(s):  
Amirhesam Amerinatanzi ◽  
Narges Shayesteh Moghaddam ◽  
Hamdy Ibrahim ◽  
Mohammad Elahinia

Additive manufacturing (i.e. 3D printing) has only recently be shown as a well-established technology to create complex shapes and porous structures from different biocompatible metal powder such as titanium, nitinol, and stainless steel alloys. This allows for manufacturing bone fixation hardware with patient-specific geometry and properties (e.g. density and mechanical properties) directly from CAD files. Superelastic NiTi is one of the most biocompatible alloys with high shock absorption and biomimetic hysteresis behavior. More importantly, NiTi has the lowest stiffness (36–68 GPa) among all biocompatible alloys [1]. The stiffness of NiTi can further be reduced, to the level of the cortical bone (10–31.2 GPa), by introducing engineered porosity using additive manufacturing [2–4]. The low level of fixation stiffness allows for bone to receive a stress profile close to that of healthy bone during the healing period. This enhances the bone remodeling process (Wolf’s Law) which primarily driven by the pattern of stress. Also, this match in the stiffness of bone and fixation mitigates the problem of stress shielding and detrimental stress concentrations. Stress shielding is a known problem for the currently in-use Ti-6Al-4V fixation hardware. The high stiffness of Ti-6Al-4V (112 GPa) compared to bone results in the absence of mechanical loading on the adjacent bone that causes loss of bone mass and density and subsequently bone/implant failure. We have proposed additively manufactured porous NiTi fixation hardware with a patient-specific stiffness to be used for the mandibular reconstructive surgery (MRS). In MRS, the use of metallic fixation hardware and double barrel fibula graft is the standard methodology to restore the mandible functionality and aesthetic. A validated finite element model was developed from a dried cadaveric mandible using CT scan data. The model simulated a patient’s mandible after mandibular reconstructive surgery to compare the performance of the conventional Ti-6Al-4V fixation hardware with the proposed one (porous superelastic NiTi fixation plates). An optimized level of porosity was determined to match the NiTi equivalent stiffness to that of a resected bone, then it was imposed to the simulated fixation plates. Moreover, the material property of superelastic NiTi was simulated by using a validated customized code. The code was calibrated by using DSC analysis and mechanical tests on several prepared bulk samples of Ni-rich NiTi. The model was run under common activities such as chewing by considering different levels of the applied fastening torques on screws. The results show a higher level of stress distribution on mandible cortical bone in the case of using NiTi fixation plates. Based on wolf’s law it can lead to a lower level of stress shielding on the grafted bone and over time bone can remodel itself. Moreover, the results suggest an optimum fastening torque for fastening the screws for the superelastic fixations causes more normal distribution of stress on the bone similar to that for the healthy mandible. Finally, we successfully fabricated the stiffness-matched porous NiTi fixation plates using selective laser melting technique, and they were mounted on the dried cadaveric mandible used to create the finite element model.


Author(s):  
Kartikeya Dixit ◽  
Niraj Sinha

Abstract Scaffolds play an essential role in bone healing by providing temporary structural support to the native bone tissue and by hosting bone cells. To this end, several biomaterials and manufacturing methods have been proposed. Among the biomaterials, bioactive glasses have attractive properties as a scaffold material for bone repair. Simultaneously, additive manufacturing (AM) techniques have attracted significant attention owing to their capability of fabricating complex and patient specific scaffolds. Accordingly, borosilicate bioactive glass (BG-B30) has been used to fabricate the scaffolds using extrusion-based AM device in this study. Pluronic F-127 was used as an ink carrier that showed suitable shear thinning behavior for fabrication. The pure BG-B30 scaffold had a compressive strength of 23.30 MPa and was reinforced further with functionalized multi-walled carbon nanotube (MWCNT-COOH) to reduce its brittleness and enhance its compressive strength. When compared to the conventional polymer foam replication technique, the combination of MWCNT-COOH reinforcement and AM resulted in an enhancement of the compressive strength by ~646% (1.05 MPa to 35.84 MPa). Further, structural analysis using micro computed tomography revealed that the scaffolds fabricated using AM had better control over strut size and pore size in addition to better network connectivity. Finally, in vitro experiments demonstrated its bioactive behavior by formation of hydroxyapatite, and the cellular studies revealed good cell viability and osteogenesis initiation. These results are promising for the fabrication of patient-specific CNT-reinforced bioactive glass porous scaffolds for bone tissue engineering applications.


Author(s):  
D. A. Petrochenkov

Fossils of marine reptiles are a new jewelry and ornamental material and collected in the Ulyanovsk region from the Upper Jurassic deposits. They consist of (wt. %): calcite — 52, apatite — 24 and pyrite — 23, and also gypsum presents. The contents of radioactive and carcinogenic elements are close to background. The original bone structure of reptiles is preserved. Apatite replaces the bone tissue of marine reptiles, forming a cellular framework. According to the chemical composition, apatite refers to fluorohydroxyapatite with an increased Sr content. The size of the crystals is finely-dispersed. Calcite and pyrite fill the central parts of the cells. Calcite crystals of isometric and elongated shape, 0,01—0,05 mm in size, form blocks up to 0,3 mm during intergrowth. Calcite fills thin, discontinuous veins along the contour of cells with a width of up to 0,03 mm. In calcite, among the impurity elements, there are (wt. %, on the average): Mg — 0,30, Mn — 0,39 and Fe — 0,96. Pyrite forms a dispersed impregnation in calcite and apatite, content of impurities is, wt. %: Ni — up to 0,96 and Cu — up to 0,24. On technological and decorative characteristics of fossils of sea reptiles of Ulyanovsk region are qualitative jewelry and ornamental materials of biomineral group, allowing to make a wide assortment of jewelry and souvenir products.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1746
Author(s):  
Iñigo Calderon-Uriszar-Aldaca ◽  
Sergio Perez ◽  
Ravi Sinha ◽  
Maria Camara-Torres ◽  
Sara Villanueva ◽  
...  

Additive manufacturing (AM) of scaffolds enables the fabrication of customized patient-specific implants for tissue regeneration. Scaffold customization does not involve only the macroscale shape of the final implant, but also their microscopic pore geometry and material properties, which are dependent on optimizable topology. A good match between the experimental data of AM scaffolds and the models is obtained when there is just a few millimetres at least in one direction. Here, we describe a methodology to perform finite element modelling on AM scaffolds for bone tissue regeneration with clinically relevant dimensions (i.e., volume > 1 cm3). The simulation used an equivalent cubic eight node finite elements mesh, and the materials properties were derived both empirically and numerically, from bulk material direct testing and simulated tests on scaffolds. The experimental validation was performed using poly(ethylene oxide terephthalate)-poly(butylene terephthalate) (PEOT/PBT) copolymers and 45 wt% nano hydroxyapatite fillers composites. By applying this methodology on three separate scaffold architectures with volumes larger than 1 cm3, the simulations overestimated the scaffold performance, resulting in 150–290% stiffer than average values obtained in the validation tests. The results mismatch highlighted the relevance of the lack of printing accuracy that is characteristic of the additive manufacturing process. Accordingly, a sensitivity analysis was performed on nine detected uncertainty sources, studying their influence. After the definition of acceptable execution tolerances and reliability levels, a design factor was defined to calibrate the methodology under expectable and conservative scenarios.


2021 ◽  
Vol 22 (12) ◽  
pp. 6232
Author(s):  
Ryosuke Ozasa ◽  
Aira Matsugaki ◽  
Tadaaki Matsuzaka ◽  
Takuya Ishimoto ◽  
Hui-Suk Yun ◽  
...  

Human-induced pluripotent stem cells (hiPSCs) can be applied in patient-specific cell therapy to regenerate lost tissue or organ function. Anisotropic control of the structural organization in the newly generated bone matrix is pivotal for functional reconstruction during bone tissue regeneration. Recently, we revealed that hiPSC-derived osteoblasts (hiPSC-Obs) exhibit preferential alignment and organize in highly ordered bone matrices along a bone-mimetic collagen scaffold, indicating their critical role in regulating the unidirectional cellular arrangement, as well as the structural organization of regenerated bone tissue. However, it remains unclear how hiPSCs exhibit the cell properties required for oriented tissue construction. The present study aimed to characterize the properties of hiPSCs-Obs and those of their focal adhesions (FAs), which mediate the structural relationship between cells and the matrix. Our in vitro anisotropic cell culture system revealed the superior adhesion behavior of hiPSC-Obs, which exhibited accelerated cell proliferation and better cell alignment along the collagen axis compared to normal human osteoblasts. Notably, the oriented collagen scaffold stimulated FA formation along the scaffold collagen orientation. This is the first report of the superior cell adhesion behavior of hiPSC-Obs associated with the promotion of FA assembly along an anisotropic scaffold. These findings suggest a promising role for hiPSCs in enabling anisotropic bone microstructural regeneration.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 830
Author(s):  
Sina Rößler ◽  
Andreas Brückner ◽  
Iris Kruppke ◽  
Hans-Peter Wiesmann ◽  
Thomas Hanke ◽  
...  

Today, materials designed for bone regeneration are requested to be degradable and resorbable, bioactive, porous, and osteoconductive, as well as to be an active player in the bone-remodeling process. Multiphasic silica/collagen Xerogels were shown, earlier, to meet these requirements. The aim of the present study was to use these excellent material properties of silica/collagen Xerogels and to process them by additive manufacturing, in this case 3D plotting, to generate implants matching patient specific shapes of fractures or lesions. The concept is to have Xerogel granules as active major components embedded, to a large proportion, in a matrix that binds the granules in the scaffold. By using viscoelastic alginate as matrix, pastes of Xerogel granules were processed via 3D plotting. Moreover, alginate concentration was shown to be the key to a high content of irregularly shaped Xerogel granules embedded in a minimum of matrix phase. Both the alginate matrix and Xerogel granules were also shown to influence viscoelastic behavior of the paste, as well as the dimensionally stability of the scaffolds. In conclusion, 3D plotting of Xerogel granules was successfully established by using viscoelastic properties of alginate as matrix phase.


Sign in / Sign up

Export Citation Format

Share Document