scholarly journals Combined Strengthening Techniques to Improve the Out-of-Plane Performance of Masonry Walls

Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1171 ◽  
Author(s):  
Elena Ferretti ◽  
Giovanni Pascale

The purpose of this study is to improve the performance of walls under out-of-plane loads especially when subjected to the hammering action of the floors. The idea behind the paper is to provide the masonry walls with a device that behaves like a buttress, without having to build a traditional buttress. The solution presented in this paper consists of a mechanical coupling between the three-dimensional net of steel ribbons of the CAM (Active Confinement of Masonry) system and the CFRP (Carbon Fiber Reinforced Polymer) strips. Since the steel ribbons of the CAM system have a pre-tension, the mechanical coupling allows the steel ribbons to establish a semi-rigid transverse link between the CFRP strips bonded on the two opposite sides of a wall. Therefore, two vertical CFRP strips tied by the steel ribbons behave like the flanges of an I-beam and the flexural strength of the ideal I-beam counteracts the out-of-plane displacements of the wall. The experimental results showed that the combined technique inherits the strong points of both constituent techniques. In fact, the delamination load is comparable to that of the specimens reinforced with the CFRP strips and the overall behavior is as ductile as for the specimens reinforced with the CAM system. They also inspired a more performing combined technique.

Author(s):  
Elena Ferretti ◽  
Giovanni Pascale

The purpose of this study is to improve the performance of walls under out-of-plane loads, particularly when subjected to the hammering action of the floors. The idea behind the paper is to provide the masonry walls with a device that behaves like a buttress, without having to build a traditional buttress. The solution presented here consists of a mechanical coupling between the three-dimensional net of steel ribbons of the CAM system and the CFRP strips. Since the steel ribbons of the CAM system have a pre-tension, the mechanical coupling allows the steel ribbons to establish a semi-rigid transverse link between the CFRP strips bonded on two opposite sides of a wall. Therefore, two vertical CFRP strips tied by the steel ribbons behave like the flanges of an I-beam and the flexural strength of the ideal I-beam counteracts the out-of-plane displacements of the wall. The experimental results showed that the combined technique inherits the strong points of both constituent techniques: the delamination load is comparable to that of the specimens reinforced with the CFRP strips and the overall behavior is ductile as for the specimens reinforced with the CAM system. They also allowed us to design a more performing combined technique.


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2712
Author(s):  
Elena Ferretti

The present paper deals with an improvement of the strengthening technique consisting in the combined use of straps—made of stainless steel ribbons—and CFRP (Carbon Fiber Reinforced Polymer) strips, to increase the out-of-plane ultimate load of masonry walls. The straps of both the previous and the new combined technique pass from one face to the opposite face of the masonry wall through some holes made along the thickness, giving rise to a three-dimensional net of loop-shaped straps, closed on themselves. The new technique replaces the stainless steel ribbons with steel wire ropes, which form closed loops around the masonry units and the CFRP strips as in the previous technique. A turnbuckle for each steel wire rope allows the closure of the loops and provides the desired pre-tension to the straps. The mechanical coupling—given by the frictional forces—between the straps and the CFRP strips on the two faces of the masonry wall gives rise to an I-beam behavior that forces the CFRP strips to resist the load as if they were the two flanges of the same I-beam. Even the previous combined technique exploits the ideal I-beam mechanism, but the greater stiffness of the steel wire ropes compared to the stiffness of the steel ribbons makes the constraint between the facing CFRP strips stiffer. This gives the reinforced structural element a greater stiffness and delamination load. In particular, the experimental results show that the maximum load achievable with the second combined technique is much greater than the maximum load provided by the CFRP strips. Even the ultimate displacement turns out to be increased, allowing us to state that the second combined technique improves both strength and ductility. Since the CFRP strips of the combined technique run along the vertical direction of the wall, the ideal I-beam mechanism is particularly useful to counteract the hammering action provided by the floors on the perimeter walls, during an earthquake. Lastly, when the building suffers heavy structural damage due to a strong earthquake, the box-type behavior offered by the three-dimensional net of straps prevents the building from collapsing, acting as a device for safeguarding life.


Author(s):  
Elena Ferretti

The present paper deals with an improvement of the strengthening technique consisting in the combined use of straps—made of stainless steel ribbons—and CFRP strips, to increase the out-of-plane strength of masonry walls. The straps of both the previous and the new combined technique pass from one face to the opposite face of the masonry wall through some holes made along the thickness, giving rise to a three-dimensional net of loop-shaped straps, closed on themselves. The new technique replaces the stainless steel ribbons with steel wire ropes, which form closed loops around the masonry units and the CFRP strips as in the previous technique. A turnbuckle for each steel wire rope allows the closure of the loops and provides the desired pre-tension to the straps. The mechanical coupling—given by the frictional forces—between the straps and the CFRP strips placed on the two faces of the masonry wall gives rise to an I-beam behavior of the facing CFRP strips, which begin to resist the load as if they were the two flanges of the same I-beam. Even the previous combined technique exploits the ideal I-beam mechanism, but the greater stiffness of the steel wire ropes compared to the stiffness of the steel ribbons makes the constraint between the facing CFRP strips stiffer. This gives the reinforced structural element greater stiffness and delamination load. In particular, the experimental results show that the maximum load achievable with the second combined technique is much greater than the maximum load provided by the CFRP strips. Even the ultimate displacement turns out to be increased, allowing us to state that the second combined technique improves both strength and ductility. Since the CFRP strips of the combined technique run along the vertical direction of the wall, the ideal I-beam mechanism is particularly useful to counteract the hammering actions provided by the floors on the perimeter walls, during an earthquake. Lastly, after the building went out of service, the box-type behavior offered by the three-dimensional net of straps prevents the building from collapsing, acting as a device for safeguarding life.


Author(s):  
Elena Ferretti

The present paper deals with an improvement of the strengthening technique consisting in the combined use of straps—made of stainless steel ribbons—and CFRP strips, to increase the out-of-plane strength of masonry walls. The straps of both the previous and the new combined technique pass from one face to the opposite face of the masonry wall through some holes made along the thickness, giving rise to a three-dimensional net of loop-shaped straps, closed on themselves. The new technique replaces the stainless steel ribbons with steel wire ropes, which form closed loops around the masonry units and the CFRP strips as in the previous technique. A turnbuckle for each steel wire rope allows the closure of the loops and provides the desired pre-tension to the straps. The mechanical coupling—given by the frictional forces—between the straps and the CFRP strips placed on the two faces of the masonry wall gives rise to an I-beam behavior of the facing CFRP strips, which begin to resist the load as if they were the two flanges of the same I-beam. Even the previous combined technique exploits the ideal I-beam mechanism, but the greater stiffness of the steel wire ropes compared to the stiffness of the steel ribbons makes the constraint between the facing CFRP strips stiffer. This gives the reinforced structural element greater stiffness and delamination load. In particular, the experimental results show that the maximum load achievable with the second combined technique is much greater than the maximum load provided by the CFRP strips. Even the ultimate displacement turns out to be increased, allowing us to state that the second combined technique improves both strength and ductility. Since the CFRP strips of the combined technique run along the vertical direction of the wall, the ideal I-beam mechanism is particularly useful to counteract the hammering actions provided by the floors on the perimeter walls, during an earthquake. Lastly, after the building went out of service, the box-type behavior offered by the three-dimensional net of straps prevents the building from collapsing, acting as a device for safeguarding life.


2018 ◽  
Vol 52 (23) ◽  
pp. 3265-3273 ◽  
Author(s):  
Xin-Tao Wang ◽  
Yun-Long Chen ◽  
Li Ma

In recent years, three-dimensional auxetic structures have attracted great interest. Generally, three-dimensional auxetic structures are of complicate geometries which make them difficult to fabricate, benefiting from the development of additive manufacturing technologies, many three-dimensional auxetic structures can be made from metals or polymers. However, to the authors' knowledge, the additive manufacturing technology of fiber reinforced polymer is not fully developed, and none three-dimensional auxetic structure made from fiber reinforced polymer has been reported before. To integrate the high specific stiffness, high specific strength, and light weight merits of high-performance fiber reinforced polymer composites into three-dimensional auxetic structures with unique properties, research on composite three-dimensional auxetic structures made from fiber reinforced polymer should be conducted. This paper presents the composite three-dimensional re-entrant auxetic structures made from carbon fiber reinforced polymer laminates using an interlocking assembly method. The auxetic nature of the composite structure has been verified by experimental testing and finite element simulations. Based on the finite element models, the dependences of the Poisson's ratio and effective compression modulus of the composite auxetic three-dimensional re-entrant structure on the re-entrant angle have been studied and compared to metal three-dimensional re-entrant structure. A comparative study of the Poisson's ratio and specific stiffness of carbon fiber reinforced polymer composite auxetic structure with the three-dimensional printed polymer and metal auxetic structures in literature has also been conducted.


Sign in / Sign up

Export Citation Format

Share Document