scholarly journals Fabrication of High Permittivity Resin Composite for Vat Photopolymerization 3D Printing: Morphology, Thermal, Dynamic Mechanical and Dielectric Properties

Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3818 ◽  
Author(s):  
Malas ◽  
Isakov ◽  
Couling ◽  
Gibbons

The formulation of a high dielectric permittivity ceramic/polymer composite feedstock for daylight vat photopolymerization 3D printing (3DP) is demonstrated, targeting 3DP of devices for microwave and THz applications. The precursor is composed of a commercial visible light photo-reactive polymer (VIS-curable photopolymer) and dispersed titanium dioxide (TiO2, TO) ceramic nano-powder or calcium copper titanate (CCT) micro-powder. To provide consistent 3DP processing from the formulated feedstocks, the carefully chosen dispersant performed the double function of adjusting the overall viscosity of the photopolymer and provided good matrix-to-filler bonding. Depending on the ceramic powder content, the optimal viscosities for reproducible 3DP with resolution better than 100 µm were η(TO) = 1.20 ± 0.02 Pa.s and η (CCT) = 0.72 ± 0.05 Pa.s for 20% w/v TO/resin and 20% w/v CCT/resin composites at 0.1 s−1 respectively, thus showing a significant dependence of the “printability” on the dispersed particle sizes. The complex dielectric properties of the as-3D printed samples from pure commercial photopolymer and the bespoke ceramic/photopolymer mixes are investigated at 2.5 GHz, 5 GHz, and in the 12–18 GHz frequency range. The results show that the addition of 20% w/v of TO and CCT ceramic powder to the initial photopolymer increased the real part of the permittivity of the 3DP composites from ε’ = 2.7 ± 0.02 to ε’(TO) = 3.88 ± 0.02 and ε’(CCT) = 3.5 ± 0.02 respectively. The present work can be used as a guideline for high-resolution 3DP of structures possessing high-ε.

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
M. P. F. Graça ◽  
K. D. A. Sabóia ◽  
F. Amaral ◽  
L. C. Costa

The CaCu3Ti4O12 (CCTO) ceramic powder was inserted in the polyvinyl alcohol (PVA) polymeric matrix, with an increasing weight fraction of the filler, to form a flexible and high dielectric constant composite at the GHz region. The structural characterization of the samples was performed using X-ray diffraction and scanning electron microscopy (SEM). The complex permittivity was calculated by the small perturbation theory using two resonant cavities (2.7 GHz and 5.0 GHz). Several classical models (Maxwell Garnett, Lichtenecker, effective medium theory (EMT), and Yamada) were used to fit the real part of the complex permittivity of the composite as a function of the weight fraction of CCTO powder inserted in the PVA matrix. The best predictions for the dielectric behavior of these samples were obtained with the EMT and Yamada models.


2018 ◽  
Vol 76 (8) ◽  
pp. 3957-3970 ◽  
Author(s):  
Yang Wang ◽  
Lingjie Zhu ◽  
Jun Zhou ◽  
Beibei Jia ◽  
Yingye Jiang ◽  
...  

SINERGI ◽  
2021 ◽  
Vol 25 (3) ◽  
pp. 361
Author(s):  
Muhamad Fitri ◽  
Shahruddin Mahzan ◽  
Imam Hidayat ◽  
Nurato Nurato

The development of composite materials is increasingly widespread, which require superior mechanical properties. From many studies, it is found that the mechanical properties of composite materials are influenced by various factors, including the reinforcement content, both in the form of fibers and particle powder. However, those studies have not investigated the effect of the hardener weight fraction on the mechanical properties of resin composite materials. Even though its function as a hardener is likely to affect its mechanical properties, it might obtain the optimum composition of the reinforcing content and hardener fraction to get the specific mechanical properties. This study examines the effect of hardener weight fraction combined with fiber powder content on mechanical properties of EPR-174 epoxy resin matrix composite and determines the optimum of Them. The research was conducted by testing a sample of composite matrix resin material reinforced with coconut fiber powder. The Powder content was made in 3 levels, i.e.: 6%, 8%, and 10%. While the hardener fraction of resin was made in 3 levels, i.e.: 0.4, 0.5, and 0.6. The test results showed that pure resin had the lowest impact strength of 1.37 kJ/m2. The specimen with a fiber powder content of 6% has the highest impact strength i.e.: 4.92 kJ/m2. The hardener fraction of 0.5 has the highest impact strength i.e.: 4.55 kJ/m2. The fiber powder content of 8% produced the highest shear strength i.e.: 1.00 MPa. Meanwhile, the hardener fraction of 0.6 has the highest shear strength i.e.: 2.03 MPa.


2021 ◽  
pp. 1-10
Author(s):  
Miaomiao Jia ◽  
Yuzhen Zhao ◽  
Hong Gao ◽  
Dong Wang ◽  
Zongcheng Miao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document