scholarly journals Metallurgical and Mechanical Characterization of High-Speed Friction Stir Welded AA 6082-T6 Aluminum Alloy

Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4211 ◽  
Author(s):  
Anton Naumov ◽  
Iuliia Morozova ◽  
Evgenii Rylkov ◽  
Aleksei Obrosov ◽  
Fedor Isupov ◽  
...  

The objective of this study was to investigate the effect of the high welding speed on the mechanical properties and their relations to microstructural characteristics of butt friction stir welded joints with the use of 6082-T6 aluminum alloy. The aluminum sheets of 2.0 mm thick were friction stir welded at low (conventional FSW) and high welding speeds (HSFSW) of 200 and 2500 mm/min, respectively. The grain size in the nugget zone (NZ) was decreased; the width of the softened region was narrowed down as well as the lowest microhardness value located in the heat-affected zone (HAZ) was enhanced by HSFSW. The increasing welding speed resulted in the higher ultimate tensile strength and lower elongation, but it had a slight influence on the yield strength. The differences in mechanical properties were explained by analysis of microstructural changes and tensile fracture surfaces of the welded joints, supported by the results of the numerical simulation of the temperature distribution and material flow. The fracture of the conventional FSW joint occurred in the HAZ, the weakest weld region, while all HSFSW joints raptured in the NZ. This demonstrated that both structural characteristics and microhardness distribution influenced the actual fracture locations.

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6178
Author(s):  
Shikang Gao ◽  
Li Zhou ◽  
Guangda Sun ◽  
Huihui Zhao ◽  
Xiaolong Chu ◽  
...  

In the present study, 8 mm-thick 5251 aluminum alloy was self-reacting friction stir welded (SRFSW) employing an optimized friction stir tool to analyze the effect of welding speed from 150 to 450 mm/min on the microstructure and mechanical properties at a constant rotation speed of 400 rpm. The results indicated that high-quality surface finish and defect-free joints were successfully obtained under suitable process parameters. The microhardness distribution profiles on the transverse section of joint exhibited a typical “W” pattern. The lowest hardness values located at the heat-affected zone (HAZ) and the width of the softened region decreased with increasing welding speed. The tensile strength significantly decreased due to the void defect, which showed mixed fracture characteristics induced by the decreasing welding speed. The average tensile strength and elongation achieved by the SRFSW process were 242.61 MPa and 8.3% with optimal welding conditions, and the fracture surface exhibited a typical toughness fracture mode.


2014 ◽  
Vol 496-500 ◽  
pp. 110-113
Author(s):  
Dong Gao Chen ◽  
Jin He Liu ◽  
Zhi Hua Ma ◽  
Wu Lin Yang

The7A05 aluminum alloy of the 10mm thickness was welded by the friction stir welding. The microstructure and mechanical Properties of the welded joint was researched by the optical microscope, etc. The results showed: the microstructure of the weld nugget zone and the thermal mechanically affected zone were refined as the welding speed increasing when the rotate speed is constant. As the welding speed increasing the strength of extension of the welded joint is increasing at first and then stable basically. but the yield strength had no obvious change.


2014 ◽  
Vol 699 ◽  
pp. 169-174
Author(s):  
Achmad Zubaydi ◽  
Nurul Muhayat ◽  
Budie Santosa ◽  
Dony Setyawan

Double sided friction stir butt welds on 6 mm thick of 5083 aluminum alloy were produced. Two variants of the weld side combination, different weld side (DS) and same weld side (SS), have been made to investigate the effect of the weld side on mechanical properties.The SS is a double sided welding process that produces advancing side in one plate and retreating side in the other one. On the other hand, the DS is a double sided welding process that causes advancing side and retreating side in each plate. Tensile properties of the joints were evaluated and correlated with macrostructure and hardness. The weld side influenced the macrostructure and mechanical properties of welded joints. The different weld side (DS) had better mechanical properties than the same weld side (SS).


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 23
Author(s):  
Liangwen Xie ◽  
Xianyong Zhu ◽  
Yuexiang Fan ◽  
Weijia Sun ◽  
Peng Wang ◽  
...  

In order to clarify the microstructural evolution and the mechanical property of dissimilar friction stir-welded joints of ZK60 and Mg-4.6Al-1.2Sn-0.7Zn magnesium alloys, two types of arrangement with ZK60 at advancing side (AS) or retreating side (RS) were adopted. The macrostructure and the microstructure of the dissimilar welded joints were discussed, and the microhardness and the transverse tensile properties of the joints were measured. There are three stirring sub-zones with different compositions and two clear interfaces within the joints. Due to the effect of both the original grain size of base materials and the growth of recrystallized grains, in the stir zone (SZ), the grain size of ZK60 increased slightly, while the grain size of Mg-4.6Al-1.2Sn-0.7Zn decreased significantly. The dissolution of precipitates was gradually significant from RS to AS within the SZ due to the gradual increase in strain and heat. The grain refinement led to an increase in hardness, while the dissolution of precipitates resulted in a decrease in hardness. The performance of the joints obtained with ZK60 placed on the RS is slightly better than that of that on the AS. The tensile fracture of both joints occurred at the interface between SZ and the thermos-mechanical affected zone at the AS, and showed a quasi-dissociative fracture.


Sign in / Sign up

Export Citation Format

Share Document