scholarly journals Analysis of Fatigue and Healing Properties of Conventional Bitumen and Bio-Binder for Road Pavements

Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 420 ◽  
Author(s):  
Elena Gaudenzi ◽  
Fabrizio Cardone ◽  
Xiaohu Lu ◽  
Francesco Canestrari

The analysis of fatigue behavior of bituminous binders is a complex issue due to several time-temperature dependent phenomena which interact simultaneously, such as damage accumulation, viscoelasticity, thixotropy, and healing. The present research involves rheological measurements aimed at evaluating the fatigue behavior and compares the self-healing capability of two plain bitumen and a bio-binder obtained by partially replacing one of the plain bitumen with a renewable bio-oil. Healing potential was assessed by means of an experimental approach previously implemented for modified bitumen and bituminous mastic and based on the use of a dynamic shear rheometer (DSR). The effects of some variables such as bitumen type, bio-oil addition, and aging on the healing potential of binders were taken into account. Results showed that the above-mentioned method for healing analysis is also suitable for conventional and bio-add binders. Outcomes of the experimental investigation highlight that fatigue and self-healing are mainly dependent on binder consistency and also affected by aging. Finally, the addition of bio-oil may induce even better performances in terms of healing potential compared to conventional bitumen, especially in aged condition.

2021 ◽  
Vol 274 ◽  
pp. 02011
Author(s):  
Marina Vysotskaya ◽  
Anastasia Kurlykina ◽  
Artem Shiryaev ◽  
Anna Tkacheva ◽  
Dmitry Litovchenko

Over the past few years, the research of the use of cast asphalt concrete mixtures in the upper layers of the coating of bridge structures has been actively carried out. The experience gained allows us to conclude that one of the most common effective ways to improve the durability and thermal stability of cast asphalt concrete pavements is the use of modified bituminous binders. The modified bitumen part of cast asphalt concrete acts as a medium capable of initiating the «self-healing» of the composite, independently eliminating structural defects. This study aims to research the rheological characteristics of modified bituminous binders. Bitumen grade BND 50/70 was used as a raw material in the study; the following types of additives were used as its modifiers: rubber modifier (RM), EVATHERM and SBS. The optimal concentrations of the proposed additives for modification allowing to achieve the effect of structuring the mastic component of cast asphalt concrete with insignificant increases in the temperatures of mixing and compaction of mixtures based on them have been revealed.


2020 ◽  
Vol 144 ◽  
pp. 105669
Author(s):  
Chandrashekara R. Haramagatti ◽  
Pramod Nikam ◽  
Ritesh Bhavsar ◽  
Vishwanatha Kamath ◽  
Vaibhav S. Sawant

Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 880
Author(s):  
Mariapaola Staropoli ◽  
Margarita Kruteva ◽  
Jürgen Allgaier ◽  
Andreas Wischnewski ◽  
Wim Pyckhout-Hintzen

We present a structural and dynamic study on the simplest supramolecular hetero-association, recently investigated by the authors to prepare architectural homogeneous structures in the melt state, based on the bio-inspired hydrogen-bonding of thymine/diaminotriazine (thy–DAT) base-pairs. In the combination with an amorphous low Tg poly(butylene oxide) (PBO), no micellar structures are formed, which is expected for nonpolar polymers because of noncompatibility with the highly polar supramolecular groups. Instead, a clear polymer-like transient architecture is retrieved. This makes the heterocomplementary thy–DAT association an ideal candidate for further exploitation of the hydrogen-bonding ability in the bulk for self-healing purposes, damage management in rubbers or even the development of easily processable branched polymers with built-in plasticizer. In the present work, we investigate the temperature range from Tg + 20 °C to Tg + 150 °C of an oligomeric PBO using small-angle X-ray scattering (SAXS) and linear rheology on the pure thy and pure DAT monofunctionals and on an equimolar mixture of thy/DAT oligomers. The linear rheology performed at low temperature is found to correspond to fully closed-state dimeric configurations. At intermediate temperatures, SAXS probes the equilibrium between open and closed states of the thy–DAT mixtures. The temperature-dependent association constant in the full range between open and closed H-bonds and an enhancement of the monomeric friction coefficient due to the groups is obtained. The thy–DAT association in the melt is more stable than the DAT–DAT, whereas the thy–thy association seems to involve additional long-lived interactions.


Sign in / Sign up

Export Citation Format

Share Document