scholarly journals Advanced Photocatalytic Materials

Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 821 ◽  
Author(s):  
Vlassis Likodimos

Semiconductor photocatalysts have attracted a great amount of multidiscipline research due to their distinctive potential for solar-to-chemical-energy conversion applications, ranging from water and air purification to hydrogen and chemical fuel production. This unique diversity of photoinduced applications has spurred major research efforts on the rational design and development of photocatalytic materials with tailored structural, morphological, and optoelectronic properties in order to promote solar light harvesting and alleviate photogenerated electron-hole recombination and the concomitant low quantum efficiency. This book presents a collection of original research articles on advanced photocatalytic materials synthesized by novel fabrication approaches and/or appropriate modifications that improve their performance for target photocatalytic applications such as water (cyanobacterial toxins, antibiotics, phenols, and dyes) and air (NOx and volatile organic compounds) pollutant degradation, hydrogen evolution, and hydrogen peroxide production by photoelectrochemical cells.

2020 ◽  
Vol 18 (12) ◽  
pp. 853-860
Author(s):  
Mohamed Jaffer Sadiq Mohamed

Photocatalysis is viewed as perhaps the best-progressed treatment measures in eliminating numerous dangerous natural toxins from wastewater. It enjoys numerous benefits, however some downsides are: (i) Fast photogenerated electron–hole recombination productivity, (ii) they restricted noticeable light reaction capacity, (iii) low specific surface region, and (iv) the expense of reagents utilization. To improve the economy of the process, it is likewise needed to expand the catalyst’s effectiveness. Consequently, there is an extraordinary requirement for the improvement of elite catalysts. This mini-review survey addresses the basics and uses of photocatalytic materials on metal tungstate-based nanocomposites. The mini-review shows how metal tungstate-based nanocom-posites can help take care of ecological issues. This mini-review also expected survey gives outlines, synthesis, characterizations, and exploration discoveries in the field of metal tungstate-based nanocomposites for photocatalytic applications in the future examination.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1871
Author(s):  
Yerkin Shabdan ◽  
Aiymkul Markhabayeva ◽  
Nurlan Bakranov ◽  
Nurxat Nuraje

This review focuses on tungsten oxide (WO3) and its nanocomposites as photoactive nanomaterials for photoelectrochemical cell (PEC) applications since it possesses exceptional properties such as photostability, high electron mobility (~12 cm2 V−1 s−1) and a long hole-diffusion length (~150 nm). Although WO3 has demonstrated oxygen-evolution capability in PEC, further increase of its PEC efficiency is limited by high recombination rate of photogenerated electron/hole carriers and slow charge transfer at the liquid–solid interface. To further increase the PEC efficiency of the WO3 photocatalyst, designing WO3 nanocomposites via surface–interface engineering and doping would be a great strategy to enhance the PEC performance via improving charge separation. This review starts with the basic principle of water-splitting and physical chemistry properties of WO3, that extends to various strategies to produce binary/ternary nanocomposites for PEC, particulate photocatalysts, Z-schemes and tandem-cell applications. The effect of PEC crystalline structure and nanomorphologies on efficiency are included. For both binary and ternary WO3 nanocomposite systems, the PEC performance under different conditions—including synthesis approaches, various electrolytes, morphologies and applied bias—are summarized. At the end of the review, a conclusion and outlook section concluded the WO3 photocatalyst-based system with an overview of WO3 and their nanocomposites for photocatalytic applications and provided the readers with potential research directions.


2003 ◽  
Vol 5 (1) ◽  
pp. 3-6 ◽  
Author(s):  
Hak-Soo Kim ◽  
Eun-Ah Lee ◽  
Ju-Hyeon Lee ◽  
Chul-Hee Han ◽  
Jin-Wook Ha ◽  
...  

We have introduced the discharge photoelectrocatalytic system, in whichTiO2thin film coating on aluminum plate is subjected simultaneously to both UV irradiation and high voltages in excess of 3000 volts. Due to high voltagesO3is generated; however, efficient removal ofO3is observed in this photoelectrocatalytic system. In terms of the removal of volatile organic compounds (VOCs), the discharge photoelectrocatalytic system has been applied to the removal of aromatic compounds such as benzene and toluene. Based on the experimental data, the rates of the removal of these compounds in this system are higher compared to either the discharge—only system (without the photocatalyst) or the photocatalyst—only system (without high voltage discharge), and the higher rates of degradation of these compounds in the photoelectrocatalytic system are attributed to the reduced rate of electron-hole recombination inTiO2.


2019 ◽  
Vol 19 (11) ◽  
pp. 7089-7096 ◽  
Author(s):  
Wufa Li ◽  
Xiaohong Yang ◽  
Haitao Fu ◽  
Xizhong An ◽  
Haiyang Zhao

Photogenerated electron–hole recombination significantly restricts the catalytic efficiency of titanium dioxide (TiO2). Various approaches have been developed to overcome this problem, yet it remains challenging. Recently, graphene modification of TiO2 has been considered as an effective alternative to prevent electron–hole recombination and consequently enhance the photocatalytic performance of TiO2. This study reports an efficient but simple hydrothermal method utilizing titanium (IV) butoxide (TBT) and graphene oxide (GO) to prepare TiO2-reduced graphene oxide (RGO) nanocomposites under mild reaction conditions. This method possesses several advantageous features, including no requirement of high temperature for TiO2 crystallization and a one-step hydrothermal reaction for mild reduction of GO without a reducing agent, which consequently makes the production of TiO2-RGO nanocomposites possible in a green and an efficient synthetic route. Moreover, the as-synthesized nanocomposites were characterized by numerous advanced techniques (SEM, TEM, BET, XRD, XPS, and UV-vis spectroscopy). In particular, the photocatalytic activities of the synthesized TiO2-RGO nanocomposites were evaluated by degrading the organic molecules (methylene blue, MB), and it was found that the photocatalytic activity of TiO2-RGO nanocomposites is ~4.5 times higher compared to that of pure TiO2. These findings would be useful for designing reduced graphene oxide-metal oxide hybrids with desirable functionalities in various applications for energy storage devices and environmental remediation.


2020 ◽  
Author(s):  
Zhaoqing Li ◽  
Zhufeng Liu ◽  
Xiao Yang ◽  
Peng Chen ◽  
Lei Yang ◽  
...  

Abstract According to the composite design, a series of black TiO2/graphene composites were synthesized to improve its photocatalytic activity. TiO2 is generated in situ on the surface of graphene by a facile sol-gel method. The combination of graphene and TiO2 was beneficial for eliminating the opportunity of photogenerated electron-hole recombination due to the excellent conductivity of graphene. In the subsequent hydrogenation process, the self-doping Ti3+ was introduced accompanied by the crystallization of amorphous TiO2. The narrowed bandgap caused by self-doping Ti3+ enhanced the visible light absorption and make the composites appear black. Both of them improved the photocatalytic performance of the synthesized black TiO2/graphene composites. The band structure of the composite was analyzed by valence band XPS, revealing the reason for the high visible light catalytic performance of the composite. The results proved that the black TiO2/graphene composites synthesized show attractive potential for applications in environmental and energy issues.


RSC Advances ◽  
2019 ◽  
Vol 9 (26) ◽  
pp. 15033-15041 ◽  
Author(s):  
Ya Gao ◽  
Yongjie Zheng ◽  
Jixing Chai ◽  
Jingzhi Tian ◽  
Tao Jing ◽  
...  

Effective separation and rapid transfer of photogenerated electron–hole pairs are key features of photocatalytic materials with high catalytic activity, which could be achieved by co-catalysts.


Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1017
Author(s):  
Carlo Boaretti ◽  
Giuseppe Vitiello ◽  
Giuseppina Luciani ◽  
Alessandra Lorenzetti ◽  
Michele Modesti ◽  
...  

The abatement of organic pollutants by TiO2 photocatalysis has been established as one of the benchmark applications of advanced oxidation processes for both liquid and gas phase purification. Such solution is particularly suitable for indoor air pollution where volatile organic compounds (VOCs) represent a class of chemicals of high concern for their adverse effects on both environment and human health. However, different shortcomings still affects TiO2 photocatalytic performance in terms of weak adsorptivity and fast electron-hole recombination, limiting its applicability. As a result, different strategies have been investigated over the last years in order to promote a higher TiO2 photo-efficiency. In this study we used electrospun (PVDF) nanofibers as a support for the photo catalytic system obtained by coupling graphene based materials and TiO2 during solvothermal synthesis. The resultant nanostructured membranes have been tested for acetaldehyde and methanol degradation under UV light showing an increase in the photocatalytic activity compared to bare TiO2. Such results may be ascribed to the decrease of band-gap energy and to increased electron mobility in the photocatalytic nanocomposite.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Ahmed M. Kamil ◽  
Falah H. Hussein ◽  
Ahmed F. Halbus ◽  
Detlef W. Bahnemann

The multiwall carbon nanotubes (MWCNTs)/titanium dioxide (P25) composite in different ratios was prepared using simple evaporation and drying process. The composite was characterized by Raman spectroscopy, X-ray diffraction (XRD), UV-visible diffuse reflectance spectroscopy, and scanning electron microscopy (SEM). The photocatalytic activity of this composite was investigated using degradation of the Bismarck brown R dye (BBR). An optimal MWCNTs/TiO2ratio of 0.5% (w/w) was found to achieve the maximum rate of BBR degradation. It was observed that the composite exhibits enhanced photocatalytic activity compared with TiO2. The enhancement in photocatalytic activity performance of the MWCNTs/P25 composite is explained in terms of recombination of photogenerated electron-hole pairs. In addition, MWCNTs act as a dispersing support to control the morphology of TiO2particles in the MWCNTs/TiO2composite.


Catalysts ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 348 ◽  
Author(s):  
Gopal Panthi ◽  
Oh Hoon Kwon ◽  
Yun-Su Kuk ◽  
Kapil Raj Gyawali ◽  
Yong Wan Park ◽  
...  

In this work, flexible ternary composites of cobalt-doped cadmium selenide/electrospun carbon nanofibers (Co-CdSe@ECNFs) for photocatalytic applications were fabricated successfully via electrospinning, followed by carbonization. For the fabrication of the proposed photocatalysts, Co-CdSe nanoparticles were grown in situ on the surface of ECNFs during the carbonization of precursor electrospun nanofibers obtained by dispersing Se powder in the electrospinning solution of polyacrylonitrile/N,N-Dimethylformamide (PAN/DMF) containing Cd2+ and Co2+. The photocatalytic performance of synthesized samples is investigated in the photodegradation of methylene blue (MB) and rhodamine B (RhB) dyes. Experimental results revealed the superior photocatalytic efficiency of Co-CdSe@ECNFs over undoped samples (CdSe@ECNFs) due to the doping effect of cobalt, which is able to capture the photogenerated electrons to prevent electron–hole recombination, thereby improving photocatalytic performance. Moreover, ECNFs could play an important role in enhancing electron transfer and optical absorption of the photocatalyst. This type of fabrication strategy may be a new avenue for the synthesis of other ECNF-based ternary composites.


2021 ◽  
Author(s):  
Cen-Feng Fu ◽  
Xingxing Li ◽  
Jinlong Yang

The two challenges of electron–hole recombination and photocorrosion for two-dimensional transition metal dichalcogenides in the application of photocatalytic water splitting are simultaneously suppressed by rational design of heterojunctions.


Sign in / Sign up

Export Citation Format

Share Document