scholarly journals Polyethylene Composites with Segregated Carbon Nanotubes Network: Low Frequency Plasmons and High Electromagnetic Interference Shielding Efficiency

Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1118 ◽  
Author(s):  
Ludmila Vovchenko ◽  
Ludmila Matzui ◽  
Viktor Oliynyk ◽  
Yurii Milovanov ◽  
Yevgen Mamunya ◽  
...  

Polyethylene (PE) based composites with segregated carbon nanotubes (CNTs) network was successfully prepared by hot compressing of a mechanical mixture of PE and CNT powders. Through comparison with a composite comprising randomly distributed carbon nanotubes of the same concentration, we prove that namely the segregated CNT network is responsible for the excellent electrical properties, i.e., 10−1 S/m at 0.5–1% and 10 S/m at 6–12% of CNT. The investigation of the complex impedance in the frequency range 1 kHz–2 MHz shows that the sign of real part of the dielectric permittivity ε r ′ changes from positive to negative in electrically percolated composites indicating metal-like behavior of CNT segregated network. The obtained negative permittivity and AC conductivity behavior versus frequency for high CNT content (3–12%) are described by the Drude model. At the same time, in contrast to reflective metals, high electromagnetic shielding efficiency of fabricated PE composites in the frequency range 40–60 GHz, i.e., close to 100% at 1 mm thick sample, was due to absorption coursed by multiple reflection on every PE-CNT segregated network interface followed by electromagnetic radiation absorbed in each isolated PE granule surrounded by conductive CNT shells.

2011 ◽  
Vol 14 (1) ◽  
pp. 55 ◽  
Author(s):  
Anna V. Gubarevich ◽  
Kazuki Komoriya ◽  
Osamu Odawara

In the present work, electromagnetic interference shielding properties of polymer composites with dispersed cup-stacked carbon nanotubes, graphite nanoparticles and carbon black were investigated. The polymer composites with carbon nanoparticles content from 1 to 5 w% were successfully prepared by the coagulation method, and composite sheets with thickness from 0.25 to 0.77 mm were formed by the hot press technique. The electromagnetic interference shielding efficiency measured in the frequency range of 8.2~12.4 GHz (X-band) of cup-stacked carbon nanotubes/polymer composite was considerably higher than that of carbon black and graphite nanoparticles polymer composites at the same contents of carbon nanoparticles, and contribution of absorption to the shielding efficiency was found to be higher than that of reflection.


2013 ◽  
Vol 331 ◽  
pp. 439-442 ◽  
Author(s):  
Ping Li ◽  
Aik Seng Low ◽  
Yue Yan Shan ◽  
Guat Choon Ong ◽  
Xi Jiang Yin

A carbon nanotubes (CNTs) composite and its electromagnetic interference shielding effectiveness (SE) were investigated. Its absorptance, reflectance and shielding effectiveness (SE) were analysed. The CNTs composite has a shielding effectiveness (SE) of more than 25 dB (>99.68%) in frequency range from 30 MHz to 5 GHz. The testing results also demonstrate that the shielding mechanism of the CNTs composite is mainly EMI absorption of electromagnitic radiation. The high SE of the CNTs composite in the study is attributed to a high aspect ratio (>3000) and good conductive network of CNTs within the composite.


2020 ◽  
Vol 8 (34) ◽  
pp. 11748-11759 ◽  
Author(s):  
Jingnan Ni ◽  
Ruoyu Zhan ◽  
Jun Qiu ◽  
Jincheng Fan ◽  
Binbin Dong ◽  
...  

Three-dimensional graphene aerogel/polydimethylsiloxane metacomposites with an integral multi-interface structure possess adjustable negative permittivity, excellent microwave absorption and electromagnetic interference shielding.


Sign in / Sign up

Export Citation Format

Share Document