scholarly journals Relevant Design Aspects to Improve the Stability of Titanium Dental Implants

Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1910 ◽  
Author(s):  
M. Herrero-Climent ◽  
P. López-Jarana ◽  
B. F. Lemos ◽  
F. J. Gil ◽  
C. Falcão ◽  
...  

Post-extractional implants and immediate loading protocols are becoming much more frequent in everyday clinical practice. Given the existing literature about tapered implants, the objective of this paper was to understand whether implant shape had a direct influence on the results of the insertion torque (IT) and implant stability quotient (ISQ). Seven tapered implant prototypes were developed and distributed into three groups and compared with a control cylindrical implant—VEGA by Klockner Implant System. The implants were inserted into bovine bone type III according to Lekholm and Zarb Classification. The sample size was n = 30 for the three groups. Final IT was measured with a torquemeter, and the ISQ was measured with Penguin Resonance Frequency Analysis (RFA). Modifications done to the Prototype I did not reveal higher values of the ISQ and IT when compared to VEGA. In the second group, when comparing the five prototypes (II–VI) with VEGA, it was seen that the values of the ISQ and IT were not always higher, but there were two values of the ISQ that were statistically significantly higher with the 4.0 mm diameter Prototypes II (76.3 ± 6.1) and IV (78 ± 3.7). Prototype VII was the one with higher and significant values of the ISQ and IT. In both diameters and in both variables, all differences were statistically significant enough to achieve the higher values of primary stability values (IT and ISQ). Given the limitations of this study, it can be concluded that when there is an increase of the diameter of the implant and body taper, there is an increase of the ISQ and IT, showing that the diameter of the implant is an important criteria to obtain higher values of primary stability.

Author(s):  
Bernardo Ferreira Lemos ◽  
Paula Lopez-Jarana ◽  
Carlos Falcao ◽  
Blanca Ríos-Carrasco ◽  
Javier Gil ◽  
...  

As immediate loading protocols are becoming more frequent, the primary stability of implants has become an essential criterion for the osseointegration of dental implants. Based on this, the objective of this study was to understand the influence of different undersized surgical preparation sites on the insertion torque (IT) and implant stability quotient (ISQ). Four different site-preparation protocols were performed on fresh humid type III bovine bone: one control, the standard protocol recommended by the manufacturer (P1), and three variations of undersized techniques (P2, P3 and P4). The implant used was VEGA by Klockner Implant System. The sample size was n = 40 for each of the four groups. A torquemeter was used to measure the IT, and the ISQ was measured with a Penguin RFA. Both variables showed a tendency to increase as the preparation technique was reduced, although not all the values were statistically significant (p < 0.05) when comparing with the standard preparation. The preparations without a cortical drill, P2 and P4, showed better results than those with a cortical drill. Given the limitations of this study, it can be concluded that reducing the implant preparation can increase both the IT and ISQ. Removing the cortical drill is an effective method for increasing implant stability, although it should be used carefully.


2019 ◽  
Vol 9 (5) ◽  
pp. 860 ◽  
Author(s):  
Antonio Nappo ◽  
Carlo Rengo ◽  
Giuseppe Pantaleo ◽  
Gianrico Spagnuolo ◽  
Marco Ferrari

Implant stability is relevant for the correct osseointegration and long-term success of dental implant treatments. The aim of this study has been to evaluate the influence of implant dimensions and position on primary and secondary stability of implants placed in maxilla using resonance frequency analysis. Thirty-one healthy patients who underwent dental implant placement were enrolled for the study. A total of 70 OsseoSpeed TX (Astra Tech Implant System—Dentsply Implants; Mölndal, Sweden) implants were placed. All implants have been placed according to a conventional two-stage surgical procedure according to the manufacturer instructions. Bone quality and implant stability quotient were recorded. Mean implant stability quotient (ISQ) at baseline (ISQ1) was statistically significant lower compared to 3-months post-implant placement (ISQ2) (p < 0.05). Initial implant stability was significantly higher with 4 mm diameter implants with respect to 3.5 mm. No differences were observed within maxilla regions. Implant length, diameter and maxillary regions have an influence on primary stability.


Author(s):  
Mariano Herrero-Climent ◽  
Bernardo Ferreira Lemos ◽  
Federico Herrero-Climent ◽  
Carlos Falcao ◽  
Helder Oliveira ◽  
...  

The aim of this study was to evaluate the effects of different implant sites an under-preparation sequence associated with two different implant designs on implant primary stability measured by two parameters: insertion torque (IT) and implant stability quotient (ISQ). It used two different implants: one cylindrical as a control and another one with a tapered design. The implants were inserted in type III fresh humid bovine bone and four drilling sequences were used: one control, the one proposed by the implant company (P1), and three different undersized (P2, P3 and P4). P2 was the same as P1 without the cortical drill, P3 was without the last pilot drill and P4 was without both of them. The sample size was n = 40 for each of the eight groups. Final IT was measured with a torquemeter and the ISQ was measured with Penguin resonance frequency analysis. Results showed that both ISQ and IT have a tendency to increase as the preparation technique reduces the implant site diameter when compared with the standard preparation, P1. The preparations without cortical drill, P2 and P4, showed the best results when compared with the ones with a cortical drill. Tapered implants always showed higher or the same ISQ and IT values when compared with the cylindrical implants. Giving the limitations of this study, it can be concluded that reducing implant preparation can increase IT and ISQ values. Removing the cortical drill and the use of a tapered design implant are also effective methods of increasing primary implant stability.


2013 ◽  
Vol 84 (1) ◽  
pp. 127-133 ◽  
Author(s):  
Manuel Nienkemper ◽  
Benedict Wilmes ◽  
Alexander Pauls ◽  
Dieter Drescher

ABSTRACT Objective: To evaluate the changes of mini-implant stability over the initial healing period in humans. Material and Methods: A sample of 19 consecutively treated patients (mean age 15.5 ± 7.3 years) was examined. In each patient, a mini-implant of a size of 2 × 9 mm was inserted into the anterior palate. Implant stability was assessed using resonance frequency analysis (RFA) immediately after insertion (T0), 2 weeks later (T1), 4 weeks later (T2), and 6 weeks later (T3). Insertion depth (ID) and the maximum insertion torque (IT) were measured. Data were tested for correlations between RFA, ID, and IT. All RFA values were tested for statistically significant differences between the different times. Results: The mean ID was 7.5 ± 0.6 mm, and the mean IT was 16.8 ± 0.6 Ncm. A correlation was found between RFA and ID (r  =  .726, P &lt; .0001), whereas no correlations between RFA and IT or between IT and ID were observed. From T0 to T1, the stability (36.1 ± 6.1 implant stability quotient [ISQ]) decreased nonsignificantly by 4.9 ± 6.1 ISQ values (P &gt; .05). Between T1 and T2, the stability decreased highly significantly (P &lt; .001) by 7.9 ± 5.9 ISQ values. From T2 on, RFA remained nearly unchanged (−1.7 ± 3.5 ISQ; P &gt; .05). Conclusions: Mini-implant stability is subject to changes during the healing process. During weeks 3 and 4, a significant decrease of the stability was observed. After 4 weeks, the stability did not change significantly.


Author(s):  
Paula López-Jarana ◽  
Carmen María Díaz-Castro ◽  
Artur Falcão ◽  
Blanca Ríos-Carrasco ◽  
Ana Fernandez-Palacín ◽  
...  

In order to apply the “one-abutment–one-time” concept, we evaluated the possibility of measuring resonance frequency analysis (RFA) on the abutment. This trial aimed to compare the Implant Stability Quotient (ISQ) values obtained by the PenguinRFA when screwing the transducer onto the implant or onto abutments with different heights and angulations. Eighty implants (VEGA®, Klockner Implant System, SOADCO, Les Escaldes, Andorra) were inserted into fresh bovine ribs. The groups were composed of 20 implants, 12 mm in length, with two diameters (3.5 and 4 mm). Five different abutments for screwed retained restorations (Permanent®) were placed as follows: straight with 1, 2, and 3 mm heights, and angulated at 18° with 2 and 3 mm heights. The mean value of the ISQ measured directly on the implant was 75.72 ± 4.37. The mean value of the ISQ registered over straight abutments was 79.5 ± 8.50, 76.12 ± 6.63, and 71.42 ± 6.86 for 1, 2, and 3 mm height abutments. The mean ISQ over angled abutments of 2 and 3 mm heights were 68.74 ± 4.68 and 64.51 ± 4.53 respectively. The present study demonstrates that, when the ISQ is registered over the straight abutments of 2 and 3 mm heights, the values decrease, and values are lower for angled, 3 mm height abutments.


Author(s):  
João Paulo do Vale Souza ◽  
Clóvis Lamartine de Moraes Melo Neto ◽  
Lucas Tavares Piacenza ◽  
Emily Vivianne Freitas da Silva ◽  
André Luiz de Melo Moreno ◽  
...  

Abstract Objectives This study aimed to assess the relation between the insertion torque and implant stability quotient (ISQ recorded immediately and 6 months after implant placement). Materials and Methods Twenty-five patients over the age of 18 years were selected for this study. One implant was placed per patient after tooth extraction. The implant site needed 15 mm in height and 8 mm in width. All implants had the same size (11.5 × 3.75 mm) and brand (Hexagonal Morse cone, DSP Biomedical). The insertion torque (Ncm) and resonance frequency analysis (ISQ value) (Osstell Mentor) were used to assess the primary stability (on the day of surgery). After 6 months, ISQ value was used to assess the secondary stability of each implant. Statistical Analysis The insertion torque data were correlated with ISQ measurements by using Pearson’s correlation. The significance level was 5%. Results There was a positive correlation between insertion torque and initial ISQ (correlation: 0.457; p = 0.022); however, no correlation was found between insertion torque and final ISQ (p = 0.308). Conclusion The present study demonstrated that there is a positive correlation between the insertion torque and the initial ISQ. Therefore, the higher the insertion torque, the higher the initial ISQ (or vice versa).


2020 ◽  
Vol 46 (3) ◽  
pp. 182-189 ◽  
Author(s):  
Davide Farronato ◽  
Mattia Manfredini ◽  
Michele Stocchero ◽  
Mattia Caccia ◽  
Lorenzo Azzi ◽  
...  

The aim of this study was to evaluate the influence of bone quality, drilling technique, implant diameter, and implant length on insertion torque (IT) and resonance frequency analysis (RFA) of a prototype-tapered implant with knife-edge threads. The investigators hypothesized that IT would be affected by variations in bone quality and drilling protocol, whereas RFA would be less influenced by such variables. The investigators implemented an in vitro experiment in which a prototype implant was inserted with different testing conditions into rigid polyurethane foam blocks. The independent variables were: bone quality, drilling protocol, implant diameter, and implant length. Group A implants were inserted with a conventional drilling protocol, whereas Group B implants were inserted with an undersized drilling protocol. Values of IT and RFA were measured at implant installation. IT and RFA values were significantly correlated (Pearson correlation coefficient: 0.54). A multivariable analysis showed a strong model. Higher IT values were associated with drilling protocol B vs A (mean difference: 71.7 Ncm), implant length (3.6 Ncm increase per mm in length), and substrate density (0.199 Ncm increase per mg/cm3 in density). Higher RFA values were associated with drilling protocol B vs A (mean difference: 3.9), implant length (1.0 increase per mm in length), and substrate density (0.032 increase per mg/cm3 in density). Implant diameter was not associated with RFA or IT. Within the limitations of an in vitro study, the results of this study suggest that the studied implant can achieve good level of primary stability in terms of IT and RFA. A strong correlation was found between values of IT and RFA. Both parameters are influenced by the drilling protocol, implant length, and substrate density. Further studies are required to investigate the clinical response in primary stability and marginal bone response.


2021 ◽  
Vol 11 (12) ◽  
pp. 5612
Author(s):  
Stefano Fanali ◽  
Margherita Tumedei ◽  
Pamela Pignatelli ◽  
Alessandra Lucchese ◽  
Francesco Inchingolo ◽  
...  

Background: Implant primary stability can be affected by several factors related to implant macrogeometry, local anatomy, and surgical techniques. The aim of this research was to study primary stability on polyurethane foam sheets of wide-threaded implant design compared to narrow-threaded implants. Materials and methods: Two different implant designs were positioned on D3 density polyurethane blocks in a standardized environment: the wide-threaded implant and the narrow-threaded implant, for a total of 160 specimens. Moreover, for each group, two different sizes were considered: 3.8mm × 12mm and 4.8mm × 12 mm. The insertion torque (IT) values, the removal strength (RT), and the Periotest analyses were evaluated. Results: A significantly higher IT and RT was reported for wide-threaded implants and two-stage implants (p < 0.01), compared to the narrow-threaded implants. The diameters seemed to provide a significant effect on the primary stability for both implants’ geometry (p < 0.01). A higher mean of the one-stage implant was evident in the Periotest measurements (p < 0.01). Conclusions: Both of the implants showed sufficient stability in polyurethane artificial simulation, while the wide-threaded implant design showed a higher primary stability on alveolar cancellous synthetic bone in vitro. Additionally, the prosthetic joint connection seemed to have a determinant effect on Periotest analysis, and the one-stage implants seemed to provide a high stability of the fixture when positioned in the osteotomy, which could be important for the immediate loading protocol.


2017 ◽  
Vol 43 (2) ◽  
pp. 131-138 ◽  
Author(s):  
Yen-Ting Lin ◽  
Adrienne Hong ◽  
Ying-Chin Peng ◽  
Hsiang-Hsi Hong

Clinical decisions regarding the stability and osseointegration of mandibular implants positioned using the bone expansion techniques are conflicting and limited. The objective was to evaluate the stability of implants placed using 2 surgical techniques, selected according to the initial width of the mandibular posterior edentulous ridge, with D3 bone density, during a 12-week period. Fifty-eight implants in 33 patients were evaluated. Thirty-two implants in 24 patients were positioned using the osteotome expansion technique, and 26 fixtures in 17 patients were installed using the conventional drilling technique. The implant stability quotient values were recorded at weeks 0, 1, 2, 3, 4, 6, 8, 10, and 12 postsurgery and evaluated using analysis of variance, independent, and paired t tests. Calibrated according to the stability reading of a 3.3-mm diameter implant, the osteotome expansion group was associated with a lower bone density than the conventional group (64.96 ± 6.25 vs 68.98 ± 5.06, P = .011). The osteotome expansion group achieved a comparable primary stability (ISQb-0, P = .124) and greater increases in secondary stability (ISQb-12, P = .07) than did the conventional technique. A D3 quality ridge with mild horizontal deficiency is expandable by using the osteotome expansion technique. Although the 2 groups presented similar implant stability quotient readings during the study period, the osteotome expansion technique showed significant improvement in secondary stability. The healing patterns for these techniques are therefore inconsistent.


2013 ◽  
Vol 83 (5) ◽  
pp. 832-841 ◽  
Author(s):  
Ha Na Song ◽  
Christine Hong ◽  
Robert Banh ◽  
Tania Ohebsion ◽  
Greg Asatrian ◽  
...  

ABSTRACT Objective: To compare the stability and clinical applicability of a novel orthodontic mini-implant design (N2) with the most widely used commercially available (CA) design. Materials and Methods: Two groups of mini-implants were tested: a CA design (1.5-mm diameter, 6-mm length) and N2 (3-mm diameter, 2-mm length, tapered shape). Implants were inserted in bone blocks of cortical bone simulation with varying densities (20 pounds per cubic foot [pcf], 30 pcf, and 40 pcf). A torque test was used to measure maximum insertion torque (MIT) and maximum removal torque (MRT). Compression and tension force vectors were applied at angles of 10°, 20°, 30°, and 40° using customized load pins to determine primary stability. Results: Mean MIT and MRT were higher in the N2 than the CA design at all three cortical bone densities except MRT in 20 pcf bone (not statistically significant). The mean compression force required to displace the N2 at all distances and angulations was greater for the N2 than the CA design. At all displacement distances, the highest mean tension force required for N2 displacement was at 10° angulation, whereas at 30° and 40°, the mean tension force required to displace the CA design was greater. Conclusions: The primary stability of the N2 is superior to that of the CA design and is promising for both orthodontic and orthopedic clinical applicability, especially under compression force. The short length of the N2 reduces risk of damage to anatomic structures and root proximity during placement and orthodontic treatment. The stability of the N2 may be compromised in areas of high bone density and highly angulated tension force.


Sign in / Sign up

Export Citation Format

Share Document