scholarly journals Preparation and Microstructural Characterization of a High-Cr White Cast Iron Reinforced with WC Particles

Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2596
Author(s):  
Aida B. Moreira ◽  
Laura M. M. Ribeiro ◽  
Pedro Lacerda ◽  
Ricardo O. Sousa ◽  
Ana M. P. Pinto ◽  
...  

High-chromium white cast iron (WCI) specimens locally reinforced with WC–metal matrix composites were produced via an ex situ technique: powder mixtures of WC and Fe cold-pressed in a pre-form were inserted in the mold cavity before pouring the base metal. The microstructure of the resulting reinforcement is a matrix of martensite (α’) and austenite (γ) with WC particles evenly distributed and (Fe,W,Cr)6C carbides that are formed from the reaction between the molten metal and the inserted pre-form. The (Fe,W,Cr)6C precipitation leads to the hypoeutectic solidification of the matrix and the final microstructure consists of martensite, formed from primary austenite during cooling and eutectic constituent with (Fe,Cr)7C3 and (Fe,W,Cr)6C carbides. The presence of a reaction zone with 200 µm of thickness, between the base metal and the composite should guarantee a strong bonding between these two zones.


Materials ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 209 ◽  
Author(s):  
Aida B. Moreira ◽  
Ricardo O. Sousa ◽  
Pedro Lacerda ◽  
Laura M. M. Ribeiro ◽  
Ana M. P. Pinto ◽  
...  

High-chromium white cast-iron specimens locally reinforced with TiC–metal matrix composites were successfully produced via an in situ technique based on combustion synthesis. Powder mixtures of Ti, Al, and graphite were prepared and compressed to fabricate green powder compacts that were inserted into the mold cavity before the casting. The heat of the molten iron causes the ignition of the combustion reaction of the reactant powders, resulting in the formation of the TiC by self-propagating high-temperature synthesis. The microstructure of the resultant composites and the bonding interfaces was characterized by scanning electron microscopy and energy dispersive spectroscopy (SEM/EDS), X-ray diffraction (XRD), and transmission electron microscopy (TEM). The microstructural results showed a good adhesion of the composite, suggesting an effective infiltration of the metal into the inserted compact, yet a non-homogeneous distribution of the TiC in the martensite matrix was observed. Based on the results, the in situ synthesis appears to be a great potential technique for industrial applications.



Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2225
Author(s):  
Aleksandra Kotarska ◽  
Tomasz Poloczek ◽  
Damian Janicki

The article presents research in the field of laser cladding of metal-matrix composite (MMC) coatings. Nickel-based superalloys show attractive properties including high tensile strength, fatigue resistance, high-temperature corrosion resistance and toughness, which makes them widely used in the industry. Due to the insufficient wear resistance of nickel-based superalloys, many scientists are investigating the possibility of producing nickel-based superalloys matrix composites. For this study, the powder mixtures of Inconel 625 superalloy with 10, 20 and 40 vol.% of TiC particles were used to produce MMC coatings by laser cladding. The titanium carbides were chosen as reinforcing material due to high thermal stability and hardness. The multi-run coatings were tested using penetrant testing, macroscopic and microscopic observations, microhardness measurements and solid particle erosive test according to ASTM G76-04 standard. The TiC particles partially dissolved in the structure during the laser cladding process, which resulted in titanium and carbon enrichment of the matrix and the occurrence of precipitates formation in the structure. The process parameters and coatings chemical composition variation had an influence on coatings average hardness and erosion rates.



2018 ◽  
Vol 53 (11) ◽  
pp. 1567-1576 ◽  
Author(s):  
Takalani Madzivhandila ◽  
Shepherd Bhero ◽  
Farouk Varachia

The mining industry exerts ever increasing demand for components with high wear resistance to the extent that plain ferrous alloys are falling short. Innovative metal-matrix composites non-ferrous metals have been widely researched and used. Casting composites based on ferrous alloys pose monumental challenges in casting. First, the density differential results in large buoyant forces on the ceramic such that unless a rigid structure is configured, the less dense ceramic floats on the metal stream. Second, the poor wetting properties between metal and ceramic will result in inferior bonding of the matrix, hence separation of solids in service. The paper attempts to improve the bonding characteristics of zirconia and alumina through wettability studies. High-chromium white cast iron was used as a substrate. The wetting behavior of molten iron on the substrates of zirconia and alumina was investigated. The study shows that alumina is poorly wetted with copper and nickel; the wetting angles were higher than 90°. Thus, the envisaged coating of alumina with copper or nickel prior to casting of ferrous melts will not significantly alter or improve wettability of alumina. Between copper and nickel, nickel has better bonding with alumina than copper. Titanium in high-chromium white cast iron was found to improve the wetting characteristics on alumina. The wetting angle decreased with increased titanium content.



2017 ◽  
Vol 25 (3) ◽  
pp. 209-214 ◽  
Author(s):  
G. Venkatachalam ◽  
A. Kumaravel

This paper presents the characterization of A356 composite reinforced with fly ash and basalt ash produced by stir casting method. Aluminium metal matrix composites (AMC) are used in wide variety of applications such as structural, aerospace, marine, automotive etc. Stir casting is cost effective manufacturing process and it is useful to enhance the attractive properties of AMCs. Three sets of hybrid AMC are prepared by varying the weight fraction of the reinforcements (3% basalt + 7% fly ash, 5% basalt + 5% fly, 7% basalt + 3% fly ash). The effect of reinforcements on the mechanical properties of the hybrid composites such as hardness, tensile, compressive and impact strength were studied. The obtained results reveal that tensile, compressive and impact strength was increased when weight fraction of fly ash increased, whereas the hardness increases when weight fraction of the basalt ash increased. Microscopic study reveals the dispersion of the reinforcements in the matrix.



2020 ◽  
Vol 27 (2) ◽  
pp. 190-199 ◽  
Author(s):  
Gülşah Aktaş Çelik ◽  
Maria-Ioanna T. Tzini ◽  
Şeyda Polat ◽  
Ş. Hakan Atapek ◽  
Gregory N. Haidemenopoulos




2020 ◽  
Vol 63 (3) ◽  
pp. 519-527 ◽  
Author(s):  
Baochao Zheng ◽  
Jiandong Xing ◽  
Yangzhen Liu ◽  
Wei Li
Keyword(s):  


2012 ◽  
Vol 710 ◽  
pp. 365-370 ◽  
Author(s):  
Sujayakumar Prasanth ◽  
Kumaraswamy Kaliamma Ajith Kumar ◽  
Thazhavilai Ponnu Deva Rajan ◽  
Uma Thanu Subramonia Pillai ◽  
Bellambettu Chandrasekhara Pai

Magnesium metal matrix composites (MMCs) have been receiving attention in recent years as an attractive choice for aerospace and automotive applications because of their low density and superior specific properties. Using stir casting process, AZ91 magnesium alloy metal matrix composites have been produced with different weight percentages (5, 10, 15, 20 and 25) of silicon carbide particles (SiCp) addition. Microstructural characterization reveals uniform distribution of SiC particles with good interfacial bonding between the matrix and reinforcement. Electrical conductivity and Co-efficient of Thermal Expansion (CTE) measurements carried out on these composites have yielded better properties. Improved mechanical properties such as hardness, ultimate tensile strength, and compressive strength are obtained. The microfracture mechanisms involved during tensile fracture is analyzed and correlated with the properties obtained.



Sign in / Sign up

Export Citation Format

Share Document