scholarly journals Establishing Indicators and an Analytic Method for Moisture Susceptibility and Rutting Resistance Evaluation Using a Hamburg Wheel Tracking Test

Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3269
Author(s):  
Wei-Han Wang ◽  
Chien-Wei Huang

The Hamburg wheel tracking test (HWTT) is widely used to evaluate the performance of asphalt mixtures. According to HWTT specifications, the stripping inflection point (SIP) and the rut depth at a certain number of load cycles are two common indicators for evaluating the moisture susceptibility and rutting resistance of asphalt mixtures, respectively. Although these indicators have been used extensively by several transportation institutions, the reliability and stability in evaluating asphalt mixture behaviors of these indicators have been questioned. To more effectively evaluate the performance of asphalt mixture in the HWTT, this study introduces a novel method of analysis for the HWTT and novel indicators of rutting resistance and moisture susceptibility. The proposed method and indicators were employed to analyze the HWTT results of 14 field core specimens, and the proposed indicators were compared with conventional HWTT indicators to assess their capability of distinction between asphalt mixtures with different performance behaviors in the HWTT. The results indicate that the conventional HWTT indicators cannot effectively evaluate the asphalt mixtures with different performance in the HWTT. By contrast, the proposed analytic method and indicators have significant advantages to effectively evaluate and distinguish the rutting resistance and moisture susceptibility of asphalt mixtures.

Author(s):  
Fan Yin ◽  
Chen Chen ◽  
Randy West ◽  
Amy Epps Martin ◽  
Edith Arambula-Mercado

The Hamburg wheel-tracking test (HWTT) is commonly used to evaluate the rutting resistance and moisture susceptibility of asphalt mixtures. Over the years, different test parameters have been proposed, including the traditional ones specified in AASHTO T 324 and several alternatives developed by asphalt researchers. This study was undertaken to refine the HWTT method toward enhancing its implementation as part of balanced mix design specifications for asphalt mixtures. A HWTT database was developed including test results of over 70 mixtures with a wide range of mixture components and production parameters. Data analyses were conducted to examine the relationships among various HWTT parameters, determine their correlations to field performance data, and estimate the within-laboratory repeatability of the test results. Two alternative rutting parameters, rutting resistance index ( RRI) and corrected rut depth ( CRD), were found to be advantageous over the traditional parameters of total rut depth ( TRD) and creep slope ( CS). RRI allows for direct comparison of results with different termination points, and CRD isolates the rut depth resulting from permanent deformation from that caused by stripping. Among all the rutting parameters, RRI had the best correlation to field rut depth, followed by CS, CRD, and TRD. Receiver operating characteristic analysis was conducted to determine the correspondence between HWTT results and pavement field performance related to moisture susceptibility. The analysis identified 9,000 passes as the best criterion for stripping inflection point and 2,000 passes for the alternative moisture susceptibility parameter, stripping number. Finally, the within-laboratory repeatability of HWTT rut depth measurements was determined.


Author(s):  
Fan Yin ◽  
Edith Arambula ◽  
Robert Lytton ◽  
Amy Epps Martin ◽  
Lorena Garcia Cucalon

Author(s):  
Moses Akentuna ◽  
Louay N. Mohammad ◽  
Sanchit Sachdeva ◽  
Samuel B. Cooper ◽  
Samuel B. Cooper

Moisture damage of asphalt mixtures is a major distress affecting the durability of asphalt pavements. The loaded wheel tracking (LWT) test is gaining popularity in determining moisture damage because of its ability to relate laboratory performance to field performance. However, the accuracy of LWT’s “pass/fail” criteria for screening mixtures is limited. The objective of this study was to evaluate the capability of the LWT test to identify moisture susceptibility of asphalt mixtures with different moisture conditioning protocols. Seven 12.5 mm asphalt mixtures with two asphalt binder types (unmodified PG 67-22 and modified PG 70-22), and three aggregate types (limestone, crushed gravel, and a semi-crushed gravel) were utilized. Asphalt binder and mixture samples were subjected to five conditioning levels, namely, a control; single freeze–thaw-; triple freeze–thaw-; MiST 3500 cycles; and MiST 7000 cycles. Frequency sweep at multiple temperatures and frequencies, and multiple stress creep recovery tests were performed to evaluate asphalt binders. LWT test was used to evaluate the asphalt mixture samples. Freeze–thaw and MiST conditioning resulted in an increase in stiffness in the asphalt binders as compared with the control. Further, freeze–thaw and MiST conditioning resulted in an increase in rut depth compared with the control asphalt mixture. The conditioning protocols evaluated were effective in exposing moisture-sensitive mixtures, which initially showed compliance with Louisiana asphalt mixture design specifications.


2013 ◽  
Vol 668 ◽  
pp. 292-296
Author(s):  
Ya Li Ye ◽  
Chuan Yi Zhuang ◽  
Jia Bo Hu

With the early asphalt pavements have been into the stage of medium maintenance or overhaul, recycling is a very important way for waste asphalt mixtures. A sample was taken in the expressway from Huhhot to Baotou, and the waste mixtures were extracted from field and sieved; so that the new aggregates can be determined and mix design was carried. With the aid of the penetration, the softening point and the viscosity in 135°C test, the quantity of the regenerant and the asphalt content were ascertained. Through the high temperature stable performance, the anti-low temperature performance, the water stability and the Hamburg wheel-tracking test, the appropriate gradation and the optimum asphalt content were determined. The test results showed that the pavement performance of the waste asphalt mixture was enhanced obviously with hot in-place recycling, and it has achieved technical parameters for old asphalt mixture.


2014 ◽  
Vol 1049-1050 ◽  
pp. 422-425
Author(s):  
Chao Peng ◽  
Jian Ying Yu ◽  
Jing Dai ◽  
Zhi Jie Zhao ◽  
Jing Yi Fu ◽  
...  

Effect of a chloride deicing additive (Cl-DIA) on the performance of asphalt mixture was investigated by evaluating the moisture, cracking and rutting resistance. Freeze-thaw splitting test result showed that asphalt mixture containing Cl-DIA weakened moisture resistance to some extent but it was still applicable for asphalt pavement. Wheel-tracking test indicated that Cl-DIA evidently improved the rutting resistance of the asphalt mixture and the weight concentration of Cl-DIA in asphalt mixture had to exceed 3%. Beam bending test implied that Cl-DIA did not help for the cracking of the asphalt mixture.


2012 ◽  
Vol 178-181 ◽  
pp. 1338-1343
Author(s):  
Wei Jiang ◽  
Jing Jing Xiao

According to the porous asphalt concrete’s big void structure as well as high temperature and rainy application environment, the author point out that using the conventional evaluation index such as high temperature stability and water stability to evaluate the PAC’s performance seem single, and then put up with estimating the PAC’s pavement performance by means of Hamburg Wheel Tracking under the water-high temperature’s comprehensive action. Studied on the PAC with the same raw materials and different gradations, and compared with the experimental results of AC-13 modified asphalt mixture and SMA-13, the results shows that, Hamburg Wheel Tracking test not only considered the water-high temperature’s comprehensive action on mixture, but also considered the mixture’s performance decay under long-term loading. Hamburg Wheel Tracking test can evaluate the PAC’s performance more practically, the PAC which materials and graduations reasonably designed have good performance, and its Hamburg Wheel Tracking final deformation is only 3.89mm, it can satisfy the demand from the high temperature and rainy environment. As well, the test results also comes to the conclusions that under the same materials and the same air voids, the PAC with coarse framework structure own better water stability and water-high temperature stability.


2011 ◽  
Vol 374-377 ◽  
pp. 1451-1454
Author(s):  
Hong Ying Liu

The Work made use of two different asphalts-Shengli and Kalamayi and two different aggregates-Granite and Lime-stone to study the performance of asphalt mixtures under high temperature and moisture condition. Two modifers AST-3 and hydrated lime were investigated as prospective performance enhancers. Film stripping and marshall’s Retained stability tests were used to determined the adhesion characteristics and Moisture susceptibility of mixture, immersion wheel tracking test was used to study the rutting potential at high temperature in the presence of moisture.


2013 ◽  
Vol 65 (3) ◽  
Author(s):  
Norhidayah Abdul Hassan ◽  
Mohd Rosli Hainin ◽  
Haryati Yaacob ◽  
Che Ros Ismail ◽  
Nur Zurairahetty Mohd Yunus

This study presents a laboratory evaluation on the properties of crumb rubber modified asphalt mixture using a dry process method in which the fine crumb rubber is added to substitute the aggregates portion and acts as elastic aggregates within the mix. The effect of crumb rubber in the mixture was investigated in terms of the volumetric properties using Marshall Mix Design and rutting performance using Wheel Tracking Test. The crumb rubber was added between 1 to 3% in steps of 1% by weight of aggregates to modify a dense graded mix, Asphaltic Concrete (AC14) and a gap graded mix, Stone Mastic Asphalt (SMA14) according to the Malaysian mix design. Based on the result, it was observed that the performance of the asphalt mixtures was significantly affected with the addition of crumb rubber. Rubberised asphalt mixtures for AC14 were found to have a greater resistance on rutting deformation compared to the conventional mixture. However, the use of fine rubber in SMA14 mixture with 80/100 bitumen cannot provide enough binder modification to perform as good as conventional SMA14 mixture with polymer modified bitumen. Furthermore, based on detailed review, a set of procedures for producing dry mixed rubberised asphalt mixture was identified and recommended for future studies.


2020 ◽  
Vol 238 ◽  
pp. 117674 ◽  
Author(s):  
Quan Lv ◽  
Weidong Huang ◽  
Mao Zheng ◽  
Husam Sadek ◽  
Yuan Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document