Effectiveness of Loaded Wheel Tracking Test to Ascertain Moisture Susceptibility of Asphalt Mixtures

Author(s):  
Moses Akentuna ◽  
Louay N. Mohammad ◽  
Sanchit Sachdeva ◽  
Samuel B. Cooper ◽  
Samuel B. Cooper

Moisture damage of asphalt mixtures is a major distress affecting the durability of asphalt pavements. The loaded wheel tracking (LWT) test is gaining popularity in determining moisture damage because of its ability to relate laboratory performance to field performance. However, the accuracy of LWT’s “pass/fail” criteria for screening mixtures is limited. The objective of this study was to evaluate the capability of the LWT test to identify moisture susceptibility of asphalt mixtures with different moisture conditioning protocols. Seven 12.5 mm asphalt mixtures with two asphalt binder types (unmodified PG 67-22 and modified PG 70-22), and three aggregate types (limestone, crushed gravel, and a semi-crushed gravel) were utilized. Asphalt binder and mixture samples were subjected to five conditioning levels, namely, a control; single freeze–thaw-; triple freeze–thaw-; MiST 3500 cycles; and MiST 7000 cycles. Frequency sweep at multiple temperatures and frequencies, and multiple stress creep recovery tests were performed to evaluate asphalt binders. LWT test was used to evaluate the asphalt mixture samples. Freeze–thaw and MiST conditioning resulted in an increase in stiffness in the asphalt binders as compared with the control. Further, freeze–thaw and MiST conditioning resulted in an increase in rut depth compared with the control asphalt mixture. The conditioning protocols evaluated were effective in exposing moisture-sensitive mixtures, which initially showed compliance with Louisiana asphalt mixture design specifications.

Author(s):  
Kunnawee Kanitpong ◽  
Hussain Bahia

Antistripping additives and polymer modifications are two common modifiers used to improve the fundamental properties of asphalt binders as those properties relate to the performance of asphalt mixtures. Adhesion and cohesion are two important related properties of asphalt binders that can affect asphalt mixture performance before and after water conditioning. The purpose of this study was to quantify the effects of antistripping additives and polymers on the adhesion and cohesion of binders and to relate these effects to the performance of mixtures as measured in the laboratory before and after water conditioning. The performance tests of asphalt mixtures included indirect tensile strength, uniaxial compression permanent deformation, and Hamburg wheel tracking. Asphalt mixtures were produced with different modified binders and with two aggregate types. The binders were modified with antistripping additives and polymers and by chemical treatment and oxidization methods. Granite and limestone were selected as two types of aggregate sources. The results indicate that the performance of asphalt mixtures is highly dependent on modification techniques and water conditioning. The overall performance of polymer-modified mixtures is more desirable than those of unmodified mixtures and of mixtures modified with antistripping additives. Polymers are found to improve rutting performance, adhesion, and cohesion of an asphalt binder. In contrast, the antistripping additive can improve only the adhesion without changing other properties. The results of this study also illustrate that the adhesion and cohesion of an asphalt binder are good indicators of the performance of asphalt mixtures in the laboratory when they are conditioned with water.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Goshtasp Cheraghian ◽  
Michael P. Wistuba ◽  
Sajad Kiani ◽  
Andrew R. Barron ◽  
Ali Behnood

AbstractWarm mix asphalt (WMA) is gaining increased attention in the asphalt paving industry as an eco-friendly and sustainable technology. WMA technologies are favorable in producing asphalt mixtures at temperatures 20–60 °C lower in comparison to conventional hot mix asphalt. This saves non-renewable fossil fuels, reduces energy consumption, and minimizes vapors and greenhouse gas emissions in the production, placement and conservation processes of asphalt mixtures. At the same time, this temperature reduction must not reduce the performance of asphalt pavements in-field. Low aging resistance, high moisture susceptibility, and low durability are generally seen as substantial drawbacks of WMA, which can lead to inferior pavement performance, and increased maintenance costs. This is partly due to the fact that low production temperature may increase the amount of water molecules trapped in the asphalt mixture. As a potential remedy, here we use fumed silica nanoparticles (FSN) have shown excellent potential in enhancing moisture and aging susceptibility of asphalt binders. In this study, asphalt binder modification by means of FSN was investigated, considering the effects of short-term and long-term aging on the rheological, thermal, and microstructural binder properties. This research paves the way for optimizing WMA by nanoparticles to present enhanced green asphalt technology.


2020 ◽  
Vol 5 (2) ◽  
pp. 20 ◽  
Author(s):  
Hilde Soenen ◽  
Stefan Vansteenkiste ◽  
Patricia Kara De Maeijer

Moisture susceptibility is still one of the primary causes of distress in flexible pavements, reducing the pavements’ durability. A very large number of tests are available to evaluate the susceptibility of a binder aggregate combination. Tests can be conducted on the asphalt mixture, either in a loose or compacted form, or on the individual components of an asphalt pavement. Apart from various mechanisms and models, fundamental concepts have been proposed to calculate the thermodynamic tendency of a binder aggregate combination to adhere and/or debond under wet conditions. The aim of this review is to summarize literature findings and conclusions, regarding these concepts as carried out in the CEDR project FunDBits. The applied test methods, the obtained results, and the validation or predictability of these fundamental approaches are discussed.


Author(s):  
Ibrahim A. Abdalfattah ◽  
Walaa S. Mogawer ◽  
Kevin D. Stuart

This study addresses the effects of recycled polyethylene (RPE) on the performances of both asphalt binders and asphalt mixtures. Whether using RPE in an asphalt mixture might leach harmful chemicals into rainwater or melted snow was also determined. Two processes, wet and dry, were used to formulate the RPE modified asphalt binders and mixtures. In the wet process, RPE was added to asphalt binder. In the dry process, it was added to heated aggregates. RPE from two sources and PG 64-22 virgin asphalt binders from two sources were used in this study. In conclusion, RPE improved the rutting resistance of the asphalt binders and asphalt mixtures. However, it had adverse effects on their resistance to intermediate-temperature and non-load associated cracking. The dry process could produce a mixture with a higher RPE dosage compared with the wet process using one virgin asphalt binder but not the other; thus, the virgin asphalt binder source was a significant factor for the dry process. Based on an embryotoxicity test, it was found that RPE can be used by the asphalt paving industry without creating any significant environmental risks.


Author(s):  
Gholam Hossein Hamedi ◽  
Ali Reza Azarhoosh ◽  
Mojtaba Khodadadi

In this study, the effect of using Polypropylene (PP) as an antistripping additive of asphalt mixtures is investigated. Here, the moisture susceptibility of asphalt mixtures is evaluated by determining the micro-mechanisms using the surface free energy (SFE) concept. The adhesion bond between the aggregate and asphalt binder and the cohesion strength of the asphalt binder are considered as the main factors that affect moisture damage of asphalt mixtures. Test results indicate that the use of PP improves the resistance of asphalt mixtures in both wet and dry conditions. Also, the results of the SFE tests showed that the modifying asphalt binder with PP increases free energy of adhesion that will improve adhesion resistance between asphalt binder-aggregates. The amount of debonding energy in the samples which are modified with PP is lower than the control samples. This shows that by modifying asphalt binders, the tendency of asphalt binder-aggregate stripping can be reduced. The results show the total SFE of the asphalt binders of the modified samples have more free energy rather than the control samples. This phenomenon shows that failure in the asphalt binder film and cohesion failure will be happened more rarely.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Mojtaba Mohammadafzali ◽  
Hesham Ali ◽  
James A. Musselman ◽  
Gregory A. Sholar ◽  
Aidin Massahi

Fatigue cracking is an important concern when a high percentage of Reclaimed Asphalt Pavement (RAP) is used in an asphalt mixture. The aging of the asphalt binder reduces its ductility and makes the pavement more susceptible to cracking. Rejuvenators are often added to high-RAP mixtures to enhance their performance. The aging of a rejuvenated binder is different from virgin asphalt. Therefore, the effect of aging on a recycled asphalt mixture can be different from its effect on a new one. This study evaluated the cracking resistance of 100% recycled asphalt binders and mixtures and investigated the effect of aging on this performance parameter. The cracking resistance of the binder samples was tested by a Bending Beam Rheometer. An accelerated pavement weathering system was used to age the asphalt mixtures and their cracking resistance was evaluated by the Texas Overlay Test. The results from binder and mixture tests mutually indicated that rejuvenated asphalt has a significantly better cracking resistance than virgin asphalt. Rejuvenated mixtures generally aged more rapidly, and the rate of aging was different for different rejuvenators.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Jie Ji ◽  
Hui Yao ◽  
Di Wang ◽  
Zhi Suo ◽  
Luhou Liu ◽  
...  

The objectives of this paper are to use Direct Coal Liquefaction Residue (DLCR) to modify the asphalt binders and mixtures and to evaluate the performance of modified asphalt mixtures. The dynamic modulus and phase angle of DCLR and DCLR-composite modified asphalt mixture were analyzed, and the viscoelastic properties of these modified asphalt mixtures were compared to the base asphalt binder SK-90 and Styrene-Butadiene-Styrene (SBS) modified asphalt mixtures. The master curves of the asphalt mixtures were shown, and dynamic and viscoelastic behaviors of asphalt mixtures were described using the Christensen-Anderson-Marasteanu (CAM) model. The test results show that the dynamic moduli of DCLR and DCLR-composite asphalt mixtures are higher than those of the SK-90 and SBS modified asphalt mixtures. Based on the viscoelastic parameters of CAM models of the asphalt mixtures, the high- and low-temperature performance of DLCR and DCLR-composite modified asphalt mixtures are obviously better than the SK-90 and SBS modified asphalt mixtures. In addition, the DCLR and DCLR-composite modified asphalt mixtures are more insensitive to the frequency compared to SK-90 and SBS modified asphalt mixtures.


2019 ◽  
Vol 5 (9) ◽  
pp. 1929-1940
Author(s):  
Hussein Burhan Raof ◽  
Mohammed Qadir Ismael

The action of high repeated trucks load associated with dramatically elevated ambient temperatures leads to the most harmful distress in asphalt pavements occurred in Iraq known as rutting. Essentially, it is produced from the accumulation of irrecoverable strains, which mainly occurred in the asphalt layers. That visually demonstrated as a longitudinal depression in the wheel paths as well as small upheavals to the sides. Poly Phosphoric Acid (PPA) has been used as a means of producing modified asphalt binders and the interest to use it has increased in recent years. The PPA provides modified asphalt binder, which is relatively cheaply produced compared to polymer-modified asphalt. In this paper, PPA was used by three-percentages 1, 2 and 3 % of the weight of asphalt binder. Two asphalt binder grades were used in this study, 40-50 and 60 -70.  The evaluation process based on conducting Marshall Test, Compressive strength test and the Wheel Tracking test. The optimum asphalt content was determined for eight asphalt mixture. The results of the index of retained strength of modified asphalt were slightly increased compared with conventional mixtures. The rut depth was determined by using wheel tracking device at different temperature (45 and 55 ºC) for each asphalt mixture under 10000 cycles and the results showed that modified asphalt with PPA produced mixtures with more rutting resistance than conventional asphalt mixture. Moreover, the effect of PPA on rutting resistance for asphalt grade 60-70 was higher than asphalt grade 40-50.


2010 ◽  
Vol 168-170 ◽  
pp. 906-911
Author(s):  
Chuan Feng Zheng ◽  
Lei Wang ◽  
Da Jun Zhao

pavement performance of SEBS modified asphalt mixture are analyzed. Dynamic shear rhometer(DSR) experiments were performed to evaluate the rheology properties of SEBS modified asphalt binder and performance of SEBS modified asphalt mixture was evaluated based on laboratory experiments, experiments included: wheel tracking, moisture susceptibility, low-temperature beam bending and fatigue. The results shows that the rheology properties of SEBS modified asphalt binder are more ideal than SBS modified asphalt binder on anti-fatigue effect. Tensile stress ratio(TSR) of SEBS modified asphalt mixture increases 5.0%, tensile strength increases 6.1% and tensile strain increases 19.8%, though the dynamic stability(DS) decreases 3.1%, the fatigue life-span increases significantly compared with SBS modified asphalt mixture. It means that pavement performance of SEBS modified asphalt mixture is better than SBS modified asphalt mixture, and it is more applicable to be utilized in highway engineerings and some special engineerings such as bridge deck pavement that need anti-fatigue performance.


Author(s):  
Peyman Barghabany ◽  
Wei Cao ◽  
Louay N. Mohammad ◽  
Samuel B. Cooper ◽  
Samuel B. Cooper

Because of limited amounts of natural resources, reclaimed asphalt pavement (RAP) has gained popularity in the asphalt pavement industry to meet sustainability requirements in asphalt pavement. Concerns have been raised in relation to the intermediate temperature cracking performance of asphalt mixtures containing RAP. The objective of this study was to evaluate the intermediate temperature cracking resistance of asphalt mixtures and recovered asphalt binders containing RAP. Seven plant-produced asphalt mixtures from three transportation agencies with various RAP contents and the extracted asphalt binders were evaluated with respect to intermediate temperature cracking resistance. Asphalt binder experiments included chemical and rheological characterization of recovered asphalt binders. Chemical characterization consisted of Fourier transform infrared spectroscopy and saturates/aromatics/resins/asphaltenes component analysis. Linear amplitude sweep and time sweep tests were also performed to characterize the rheological properties of asphalt binders. Asphalt mixture experiments included four-point bending beam fatigue and semi-circular bend tests. Results indicated that, as expected, asphalt mixtures with high RAP contents resulted in asphalt binders and mixtures with reduced cracking resistance. Relationships between the asphalt binder chemical and rheological parameters and asphalt mixture cracking resistance were also investigated. Asphalt binder rheological and chemical parameters were well correlated. Asphalt binder rheological parameters showed reasonable to strong relationships with the four-point bending beam fatigue test result. The work presented in this paper is part of FHWA Transportation Pooled Fund Project TPF-5(294) “Develop Mix Design and Analysis Procedure for Asphalt Mixtures Containing High RAP and/or RAS Contents.”


Sign in / Sign up

Export Citation Format

Share Document