Effect of a Chloride Deicing Additive on the Performance of Asphalt Mixture

2014 ◽  
Vol 1049-1050 ◽  
pp. 422-425
Author(s):  
Chao Peng ◽  
Jian Ying Yu ◽  
Jing Dai ◽  
Zhi Jie Zhao ◽  
Jing Yi Fu ◽  
...  

Effect of a chloride deicing additive (Cl-DIA) on the performance of asphalt mixture was investigated by evaluating the moisture, cracking and rutting resistance. Freeze-thaw splitting test result showed that asphalt mixture containing Cl-DIA weakened moisture resistance to some extent but it was still applicable for asphalt pavement. Wheel-tracking test indicated that Cl-DIA evidently improved the rutting resistance of the asphalt mixture and the weight concentration of Cl-DIA in asphalt mixture had to exceed 3%. Beam bending test implied that Cl-DIA did not help for the cracking of the asphalt mixture.

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Hui Wang ◽  
Zepeng Fan ◽  
Jiupeng Zhang

The rutting performance of asphalt pavement structure relies on the high temperature properties of asphalt mixture as well as the pavement structure and thickness. In order to investigate the influence of the structure and thickness, a full-depth wheel tracking test is developed in this research by improving the conventional wheel tracking test apparatus. The newly proposed test method is capable of varying its load speed and load size, controlling its specimen temperature gradient, and simulating the support conditions of actual asphalt pavement. The full-depth wheel tracking test based rutting performance evaluation of different asphalt pavement structures indicates that it is not reasonable to explain the rutting performance of asphalt pavement structure from the point of view of single-layer asphalt mixture rutting performance. The developed full-depth wheel tracking test can be used to distinguish rutting performance of different asphalt pavement structures, and two of five typical asphalt pavement structures commonly used in Shanxi Province were suggested for use in practical engineering.


Buildings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 315
Author(s):  
Amin Chegenizadeh ◽  
Minn-Oo Aung ◽  
Hamid Nikraz

The asphalt industry is increasingly developing with greater focus on sustainability. This study focuses on the benefits of a binder modification of stone mastic asphalt (SMA) by adding a rubber—ethylene propylene diene monomer (EPDM)—into a class 320 bitumen. This study observes the advantages that occur for the rutting and fatigue performance of the samples. The binder modification was made by incorporating 0, 2, 4 and 6% binder weight into each sample. The tests performed on the samples were the wheel-tracking test and the four-point beam bending test. The results revealed varied outcomes, with the four-point beam bending test showing the 6% sample having the highest initial stiffness and modulus of elasticity but the lowest cycle to failure. Therefore, the best performer was determined as the 4% sample, which performed consistently throughout, having the highest cumulative dissipated energy and second-highest initial flexural stiffness, modulus of elasticity and cycle to failure results. There was a clear indication of the best performer for the wheel-tracking test, with the 4% sample having the lowest rut depth, although there were signs of further improvement to be achieved within the 4–6% range. In addition, drain-off tests were conducted on the mixtures, and the addition of EPDM significantly reduced the SMA drain-off values. Overall, the best improvements through binder modification for an SMA mix with EPDM concerning fatigue and rutting resistance came from a 4% incorporation.


2013 ◽  
Vol 65 (3) ◽  
Author(s):  
Izzul Ramli ◽  
Haryati Yaacob ◽  
Norhidayah Abdul Hassan ◽  
Che Ros Ismail ◽  
Mohd Rosli Hainin

Fine Aggregate Angularity (FAA) has been identified as one of the important aggregate properties contributing to the stability of Hot Mix Asphalt (HMA) and its resistance against permanent deformation. The performance of dense graded asphalt mixture is significantly influenced by the shape, angularity and surface texture of fine aggregates. This study determines the FAA for different types of aggregates namely granite and natural sand and evaluates the rutting resistance of AC 10 mixture added with the aforementioned aggregates. Marshall test and wheel tracking test were carried out in order to assess stability and rutting resistance. It was found from FAA test, crushed granite has higher percentage of FAA (46%) compared to natural sand (37%). With higher FAA value, crushed granite mix was found to have better stability, stiffness, and flow compared to specimen with natural sand. From wheel tracking test, it was observed that the rut depth for specimen with crushed granite is lower compared to specimen with natural sand. Therefore it can be concluded that fine aggregates with more angular shape, provides better stability and increase the rutting resistance.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3269
Author(s):  
Wei-Han Wang ◽  
Chien-Wei Huang

The Hamburg wheel tracking test (HWTT) is widely used to evaluate the performance of asphalt mixtures. According to HWTT specifications, the stripping inflection point (SIP) and the rut depth at a certain number of load cycles are two common indicators for evaluating the moisture susceptibility and rutting resistance of asphalt mixtures, respectively. Although these indicators have been used extensively by several transportation institutions, the reliability and stability in evaluating asphalt mixture behaviors of these indicators have been questioned. To more effectively evaluate the performance of asphalt mixture in the HWTT, this study introduces a novel method of analysis for the HWTT and novel indicators of rutting resistance and moisture susceptibility. The proposed method and indicators were employed to analyze the HWTT results of 14 field core specimens, and the proposed indicators were compared with conventional HWTT indicators to assess their capability of distinction between asphalt mixtures with different performance behaviors in the HWTT. The results indicate that the conventional HWTT indicators cannot effectively evaluate the asphalt mixtures with different performance in the HWTT. By contrast, the proposed analytic method and indicators have significant advantages to effectively evaluate and distinguish the rutting resistance and moisture susceptibility of asphalt mixtures.


Author(s):  
Zachary Lemke ◽  
Hussain U. Bahia

Wheel tracking tests have seen a vast increase in usage among various state department of transportations for measuring rutting resistance of mixtures that already meet volumetric property requirements. With the increase in using recycled materials and warm mix additives, it is clear that using volumetric properties alone to approve asphalt mixture designs is a risky approach. Wheel tracking tests are among the most widely used methods for evaluating rutting resistance, and the AASHTO T324 (Hamburg Wheel-Tracking [HWT]) is the most widely accepted and followed procedure used today in the U.S. However, there are challenges using the HWT, among which the most difficult are the poor repeatability, time required to complete the test, and the sample preparation details. This study reports on an alternative wheel tracking method called the Rotary Asphalt Wheel Tester (RWT) that can successfully address the challenges currently faced with using the HWT. The method requires no cutting of the gyratory samples, significantly reduces time to complete a sample, and appears to offer acceptable repeatability of the results. The method has existed for more than 15 years, available commercially, but used only in a few labs, and one acceptance criterion is already developed by one agency. The study includes evaluating an expanded set of mixtures tested at two temperatures, and two air voids. The results of the RWT are compared with the results of the HWT for numerous mixtures and they show that similar qualitative ranking can be achieved.


2018 ◽  
Vol 8 (9) ◽  
pp. 1626 ◽  
Author(s):  
Wei Guo ◽  
Xuedong Guo ◽  
Xing Chen ◽  
Wenting Dai

Open graded friction course (OGFC) is a high permeable mixture used to reduce noise, improve friction. However, limitations with the use of OGFC are due to the relatively low strength and stiffness. Therefore, investigating environmental and economic benefits, as well as service life of OGFC technology is the future of the pavement. In this study, a new modified OGFC (SM-OGFC) was prepared by replacing the fine aggregate below 4.75 mm in OGFC with the oil shale waste (OSW), and the silane coupling agent modifier was used to assist modification. The preparation process of SM-OGFC was optimized by central composite design, to obtain an SM-OGFC with the best mechanical properties. The Marshall test, rutting test, −15 °C splitting test, −10 °C beam bending test, immersion Marshall test, spring-thawing stability test, Cantabro test and permeability test were conducted to evaluate the properties of SM-OGFC. The results prove that SM-OGFC has excellent overall performance in comparison with OGFC and styrene-butadiene-styrene (SBS) modified OGFC. Furthermore, Scanning Electron Microscopy (SEM) observation illustrates that the unique laminar columnar connected structure and cell-like structure antennae of OSW could be the main reasons why SM-OGFC obtained excellent performance. Furthermore, economic analysis indicated that the SM-OGFC mixture had higher cost effectiveness.


2017 ◽  
Vol 67 (328) ◽  
pp. 138 ◽  
Author(s):  
A. P. Pérez-Fortes ◽  
M. J. Varas-Muriel ◽  
P. Castiñeiras

The asphalt surface layer is the most exposed to weather and traffic conditions on roads, especially those subjected to winter maintenance. Therefore, a deep knowledge of the mechanisms which can damage this layer is necessary to improve its design, construction and long-term use. With this purpose, two types of asphalt mixtures used on roads from NW Spain were subjected to durability tests (freezing-thaw and thermal-stress) with a saturated NaCl solution. After the durability tests, a wheel tracking test was performed on the samples, and the resultant material was analyzed by optical polarized light and fluorescence microscopy. This analysis showed that the binder-aggregate low adhesion was the main responsible of the asphalt mixture damage. This damage was concentrated in the aggregates because the binder acted as an impermeable wall. Consequently, the NaCl solution penetrated and degraded the aggregates quickly and strongly.


2013 ◽  
Vol 477-478 ◽  
pp. 1175-1178
Author(s):  
Ling Zou ◽  
Jing Wei Ne ◽  
Weng Gang Zhang

70# and 90# matrix asphalt mixture with MaR were studied through dynamic modulus test, rutting test, freeze-thaw splitting test, bending test to study the applicability of the Modifying agent of rubber plastic compound (MaR) in matrix asphalt mixture.Test results were Compared with SBSI-C modified asphalt mixture.The results indicate that: high-temperature stability of MaR+70# asphalt mixture is as well as SBSI-C modified asphalt mixture,and is bettere than MaR+90# asphalt mixture; water stability of MaR+90# asphalt mixture is bettere than SBSI-C modified asphalt mixture and MaR+70# asphalt mixture; low temperature performance of MaR+90# asphalt mixture is bettere than MaR+70# asphalt mixture, but is worse than modified asphalt mixture SBSI-C ; MaR+70# asphalt mixture can be first used in area of resisting high temperature and rutting, MaR+90# asphalt mixture can be used if the water stability performance and low temperature performance are considered.


Sign in / Sign up

Export Citation Format

Share Document