scholarly journals Correction: Lyubomirskiy, N., et al. Intensive Ways of Producing Carbonate Curing Building Materials Based on Lime Secondary Raw Materials. Materials 2020, Vol. 13, 2304

Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3477
Author(s):  
Nikolai Lyubomirskiy ◽  
Aleksandr Bakhtin ◽  
Stanisław Fic ◽  
Małgorzata Szafraniec ◽  
Tamara Bakhtinа

The authors wish to make the following correction to this paper [...]

Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2304 ◽  
Author(s):  
Nikolai Lyubomirskiy ◽  
Aleksandr Bakhtin ◽  
Stanisław Fic ◽  
Małgorzata Szafraniec ◽  
Tamara Bakhtinа

The article is dedicated to the research and development of intensive methods for curing products by capturing and binding CO2. It aims to improve and increase the productivity of technologies for the production of artificially carbonated building materials and products. Soda production wastes, limestone dust and finely dispersed limestone dust were used as the research objects. Secondary raw materials have been investigated using modern methods of phase composition and granulometry test. Intensive methods of production of accelerated carbonation of systems consisting of soda wastes were tested using multi-parameter optimization methods. The effects of recycled lime materials on the strength and hydrophysical properties of the obtained material were determined. The secondary raw materials effect depended on the composition of the raw mixture, molding conditions, CO2 concentration applied to the carbonate curing chamber, and the duration of exposure to environments with high CO2 content. It was found that the most effective way of providing accelerated carbonation curing of construction materials and products is a combined carbonation method, combining the principles of dynamic and static methods. It was concluded that the optimal CO2 concentration in the gas-air mixtures used for carbonate curing is 30%–40%.


Author(s):  
А. V. RADKEVICH ◽  
V. I. ANIN ◽  
V. V. RADCHENKO ◽  
A. A. SHUVAEV

Purpose. Research and analysis of opportunities to improve the quality of insulation from secondary raw materials to study the prospects of their use in the construction industry as innovative materials with better performance than traditional ones. Materials made from secondary raw materials are of great importance not only in the formation of the building materials market, but also in the Ukrainian economy. The processing infrastructure creates a large number of jobs and tax deductions to the budget. In addition, the consumption of energy resources and the cost of servicing energy mains directly depend on the improvement of the thermal efficiency of premises and structures. The use of modern technologies of building materials combines economy, efficiency and durability of structures. Methodology. An important role in the development of modern construction production is played by the possibility of developing and improving the quality of building materials and technologies for their use. In modern conditions of the market of construction products there is an urgent need for constant modernization of construction processes, due to the efficient use of raw materials and the latest processing methods. With the use of modern information technologies and theoretical and methodological ways to solve problems, it becomes possible to consider options for improving the characteristics of building materials by combining qualitative characteristics and eliminating negative ones. Findings. This paper presents scientifically sound methods of modernization of secondary raw materials in the composition of insulation materials with high thermal and economic characteristics, which are able to compete in the market with traditional building materials. The analysis of flame retardants was carried out. Originality. Theoretical and methodological directions have been formed on the basis of research on the use of secondary raw materials for the manufacture of insulation in construction. The comparative characteristic is carried out. The conclusion on the competitiveness of the presented materials in the market of construction materials is made. Practical value. Analysis of the application of modern technologies for recycling on the basis of the latest theoretical and practical approaches, with the subsequent elimination of shortcomings. Consideration of the possibility of adding flame retardants to the composition of materials. Use of materials as insulation of premises and buildings. Development of processing infrastructure of Ukraine.


2022 ◽  
Vol 4 (6) ◽  
pp. 69-81
Author(s):  
Aleksandr Bahtin ◽  
Nikolay Lyubomirskiy ◽  
S. Fedorkin ◽  
Tamara Bahtina ◽  
G. Bilenko

the use of secondary raw materials for the production of building materials is a modern trend in solving environmental problems. In the Republic of Crimea, dumps of secondary raw materials – phosphogypsum and lime dust – have accumulated in large quantities at various enterprises. The analysis of phosphogypsum, which has been in the dumps for more than 5 years, showed that by its quality indicators it can be attributed to the 2nd grade in accordance with GOST 4013-2019, and the specific effective activity of the material (Aeff) corresponds to the I class of materials, which makes it suitable for the production of gypsum binders. Prototypes-cylinders were made from a mixture of phosphogypsum with lime dust of 1:1 composition at a pressure of 30 MPa and then subjected to hardening according to three schemes, in order to separate the passage of various types of hardening and study each of them for the physico-mechanical properties of the resulting material. The analysis of experimental data made it possible to establish the effectiveness of simultaneous flow in the system of two types of hardening – carbonate and hydration for lime and phosphogypsum components of the raw mixture, respectively. As a result of the organization of a mixed type of hardening of gypsum-lime binder, samples with a compressive strength of 26.5 MPa and a softening coefficient of 0.63 were obtained within 90 minutes. The calcium carbonate formed in the process, which is the product of the reaction between calcium hydroxide and carbon dioxide, significantly increases the water resistance of the hydration products of gypsum binder. It is established that with an optimal combination of technological factors and hardening conditions, a significant increase in the physical and mechanical characteristics of the carbonized material is possible in a short time.


2013 ◽  
Vol 688 ◽  
pp. 172-175
Author(s):  
Eva Tůmová ◽  
Rostislav Drochytka

In the development of floor structures new building materials, additives, fillers and secondary raw materials of various properties are increasingly used. It is possible to develop new types of materials with different mechanical properties. Lightweight construction materials are the essential element for industrial floors lightening and thereby for reduce of their weight. This is especially beneficial for multi-storey buildings.


Author(s):  
N. V. Lyubomirskiy ◽  
S. I. Fedorkin ◽  
А. S. Bakhtin ◽  
Т. А. Bakhtina

the article is dedicated to the research and development of intensive methods for curing products by capturing and binding CO2. It aims to improve and increase the productivity of technologies for the production of artificially carbonated building materials and products. Soda production wastes, limestone dust and finely dispersed limestone dust were used as the research objects. Secondary raw materials have been investigated using modern methods of phase composition and granulometry test. Intensive methods of production of accelerated carbonation of systems consisting of soda wastes were tested using multi-parameter optimization methods. The effects of recycled lime materials on the strength and hydrophysical properties of the obtained material were determined. The secondary raw materials effect depended on the composition of the raw mixture, molding conditions, CO2 concentration applied to the carbonate curing chamber, and the duration of exposure to environments with high CO2 content. It was found that the most effective way of providing accelerated carbonation curing of construction materials and products is a combined carbonation method, combining the principles of dynamic and static methods. It was concluded that the optimal CO2 concentration in the gas-air mixtures used for carbonate curing is 30%–40%.


Author(s):  
А. С. Успанова ◽  
З. Х. Исмаилова ◽  
В. Х. Хадисов ◽  
М. Р. Хаджиев

Вопросы ресурсосбережения являются приоритетными в промышленности строительных материалов и изделий, все большее распространение получает применение техногенного сырья в строительных композитах. Это диктуется необходимостью утилизации техногенных отходов, повышением экономической эффективности производств и вопросами защиты окружающей среды. Особый интерес в проектировании составов строительных растворов представляет применение местных некондиционных песков, техногенных песков из отсевов бетонного лома и кирпичного лома. Данная статья посвящена исследованию зернового состава отсевов дробления бетонного лома и кирпичного боя, возможности создания рецептур строительных растворов на мелких песках с их использованием. Для большинства регионов нехватка крупнозернистых песков является особо актуальной, так как без их наличия производство бетонов и растворов высокого качества проблематично. Одним из способов решения данного вопроса является применение отсевов и мелких фракций дробления вторичного сырья, пригодного для использования в качестве заполнителя по химико-минералогическому и гранулометрическому составу. В результате рециклинга вторичного сырья образующие мелкие фракции отсевов представляют большой интерес для применения в качестве крупнозернистых песков или обогащающего материала для мелких песков с низким модулем крупности. Resource-saving issues are a priority in the building materials and products industry; the use of technogenic raw materials in building composites is becoming more widespread. This is dictated by the need to utilize industrial wastes, increase the economic efficiency of production and protect the environment. Of particular interest in the design of mortar compositions is the use of local substandard sand, industrial sand from screenings of concrete scrap and brick scrap. This article is devoted to the study of the grain composition of screenings for crushing concrete scrap and brick fighting, the possibility of creating mortar formulations on fine sand with their use. For most regions, the shortage of coarse-grained sand is especially urgent, since without their presence the production of concrete and high-quality mortars is problematic. One of the ways to solve this issue is the use of screenings and small fractions of crushing secondary raw materials suitable for use as a filler in chemical-mineralogical and particle size distribution. As a result of recycling of secondary raw materials, the fine screening fractions are of great interest for use as coarse-grained sands or an enrichment material for fine sands with a low modulus of fineness.


2021 ◽  
Vol 1209 (1) ◽  
pp. 012038
Author(s):  
R Hermann ◽  
P Figala ◽  
L Mészárosová ◽  
R Drochytka

Abstract This paper deals with the study and development of polymer-based adhesive with high filling ratio of secondary raw materials and waste materials. The goal of this paper is to develop adhesive mortar with the highest filling rate of secondary raw materials and waste materials as possible while preserving very high physical-mechanical properties, including flexural and compressive strength, pull-off bond strength and abrasion resistance. High-temperature fly ash, waste slag and waste packaging glass are used in this paper as fillers. The resulting mortar shows high physical-mechanical properties, including high abrasive resistance and very high bonding strength to a large variety of building materials including concrete, steel, glass, and tiles.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3564
Author(s):  
Arnas Majumder ◽  
Laura Canale ◽  
Costantino Carlo Mastino ◽  
Antonio Pacitto ◽  
Andrea Frattolillo ◽  
...  

The building sector is known to have a significant environmental impact, considering that it is the largest contributor to global greenhouse gas emissions of around 36% and is also responsible for about 40% of global energy consumption. Of this, about 50% takes place during the building operational phase, while around 10–20% is consumed in materials manufacturing, transport and building construction, maintenance, and demolition. Increasing the necessity of reducing the environmental impact of buildings has led to enhancing not only the thermal performances of building materials, but also the environmental sustainability of their production chains and waste prevention. As a consequence, novel thermo-insulating building materials or products have been developed by using both locally produced natural and waste/recycled materials that are able to provide good thermal performances while also having a lower environmental impact. In this context, the aim of this work is to provide a detailed analysis for the thermal characterization of recycled materials for building insulation. To this end, the thermal behavior of different materials representing industrial residual or wastes collected or recycled using Sardinian zero-km locally available raw materials was investigated, namely: (1) plasters with recycled materials; (2) plasters with natural fibers; and (3) building insulation materials with natural fibers. Results indicate that the investigated materials were able to improve not only the energy performances but also the environmental comfort in both new and in existing buildings. In particular, plasters and mortars with recycled materials and with natural fibers showed, respectively, values of thermal conductivity (at 20 °C) lower than 0.475 and 0.272 W/(m⋅K), while that of building materials with natural fibers was always lower than 0.162 W/(m⋅K) with lower values for compounds with recycled materials (0.107 W/(m⋅K)). Further developments are underway to analyze the mechanical properties of these materials.


Sign in / Sign up

Export Citation Format

Share Document