scholarly journals Effect of Non-Thermal Atmospheric Pressure Plasma (NTP) and Zirconia Primer Treatment on Shear Bond Strength between Y-TZP and Resin Cement

Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 3934 ◽  
Author(s):  
Jong-Ju Ahn ◽  
Dae-Sung Kim ◽  
Eun-Bin Bae ◽  
Gyoo-Cheon Kim ◽  
Chang-Mo Jeong ◽  
...  

The purpose of this study was to investigate the effect of non-thermal atmospheric pressure plasma (NTP) treatment on the sandblasting of mechanical method and zirconia primer of chemical method used to increase the bond strength between zirconia and resin cement. In this study, Y-TZP was divided into 4 groups according to the surface treatment methods as follows: Zirconia primer (Pr), NTP + Zirconia primer (NTP + Pr), Sandblasting + Zirconia primer (Sb + Pr), Sandblasting + NTP + Zirconia primer (Sb + NTP + Pr). Then, two types of resin cement (G-CEM LinkAce and Rely X-U200) were used to measure the shear bond strength (SBS) and they were divided into non-thermal cycling group and thermal cycling group for aging effect. Statistical analyses were performed using the Kruskal-Wallis test and Mann-Whitney U test. The result of the surface energy (SE), there was no significant difference among the groups (p > 0.05). As a result of the SBS test, the Sb + Pr group had a significantly higher SBS value than the other groups regardless of the resin cement type (p < 0.05), and the decrease rate after thermal cycling treatment was the lowest. On the other hand, the NTP + Pr group showed significantly lower SBS values than the other groups except for the case of using Rely X-U200 (p < 0.05), and the reduction rate after thermal cycling was the highest. The Sb + NTP + Pr group did not differ significantly from the Pr group (p > 0.05). Within the limitations of two successive studies, treatment with NTP after sandblasting used for mechanical bond strength showed a positive effect on initial SBS. However, when NTP was treated before the zirconia primer used for the chemical bond strength, it showed a negative effect on SBS compared to other treatment methods, which was noticeable after the thermal cycling treatment.

Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3321 ◽  
Author(s):  
Dae-Sung Kim ◽  
Jong-Ju Ahn ◽  
Eun-Bin Bae ◽  
Gyoo-Cheon Kim ◽  
Chang-Mo Jeong ◽  
...  

The purpose of this study was to evaluate the effect of non-thermal atmospheric pressure plasma (NTP) on shear bond strength (SBS) between yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) and self-adhesive resin cement. For this study, surface energy (SE) was calculated with cube-shaped Y-TZP specimens, and SBS was measured on disc-shaped Y-TZP specimens bonded with G-CEM LinkAce or RelyX U200 resin cylinder. The Y-TZP specimens were classified into four groups according to the surface treatment as follows: Control (no surface treatment), NTP, Sb (Sandblasting), and Sb + NTP. The results showed that the SE was significantly higher in the NTP group than in the Control group (p < 0.05). For the SBS test, in non-thermocycling, the NTP group of both self-adhesive resin cements showed significantly higher SBS than the Control group (p < 0.05). However, regardless of the cement type in thermocycling, there was no significant increase in the SBS between the Control and NTP groups. Comparing the two cements, regardless of thermocycling, the NTP group of G-CEM LinkAce showed significantly higher SBS than that of RelyX U200 (p < 0.05). Our study suggests that NTP increases the SE. Furthermore, NTP increases the initial SBS, which is higher when using G-CEM LinkAce than when using RelyX U200.


2020 ◽  
Vol 10 (7) ◽  
pp. 2535
Author(s):  
Hyoung-Sik Kim ◽  
Song-Yi Yang ◽  
Eun Ha Choi ◽  
Kwang-Mahn Kim ◽  
Jae-Sung Kwon

The purpose of the study was to evaluate the adhesion between dental core resin and epoxy resin-based fiber post after treatment with non-thermal atmospheric pressure plasma (NTAPP) and compare with conventional methods of epoxy resin-based fiber post treatments. Contact angle was measured on the surface of epoxy resin before and after NTAPP treatment and X-ray photoelectron spectroscopy was used to analyze the surface chemistry. Finally, two shear bond strength tests were carried out; shear bond strength between core resin and epoxy resin for comparison between NTAPP treated and untreated sample, and push-out shear bond strength between core resin and NTAPP treated commercially available epoxy resin-based fiber post for comparison between NTAPP treated samples with conventionally treated samples. Contact angle on the surface of epoxy resin generally decreased with increasing NTAPP treatment time with presence of surface chemical changes. Also, there was significantly higher shear bond strength and push-out shear bond strength between epoxy resin and core resin for NTAPP treated epoxy resin, even to the conventionally treated epoxy resin-based fiber post with hydrofluoric acid or silane. In conclusion, new technology of NTAPP has potential for application on the epoxy resin-based fiber post to improve endodontic restoration success rate.


2011 ◽  
Vol 36 (5) ◽  
pp. 478-485 ◽  
Author(s):  
R Brum ◽  
R Mazur ◽  
J Almeida ◽  
G Borges ◽  
D Caldas

SUMMARY In vitro studies to assess bond strength between resins and ceramics have used surfaces that have been ground flat to ensure standardization; however, in patients, ceramic surfaces are irregular. The effect of a polished and unpolished ceramic on bond strength needs to be investigated. Sixty ceramic specimens (20×5×2 mm) were made and divided into two groups. One group was ground with 220- to 2000-grit wet silicon carbide paper and polished with 3-, 1-, and ¼-μm diamond paste; the other group was neither ground nor polished. Each group was divided into three subgroups: treated polished controls (PC) and untreated unpolished controls (UPC), polished (PE) and unpolished specimens (UPE) etched with hydrofluoric acid, and polished (PS) and unpolished specimens (UPS) sandblasted with alumina. Resin cement cylinders were built over each specimen. Shear bond strength was measured, and the fractured site was analyzed. Analysis of variance (ANOVA) and Tukey post hoc tests were performed. PE (44.47 ± 5.91 MPa) and UPE (39.70 ± 5.46 MPa) had the highest mean bond strength. PS (31.05 ± 8.81 MPa), UPC (29.11 ± 8.11 MPa), and UPS (26.41 ± 7.31 MPa) were statistically similar, and PC (24.96 ± 8.17 MPa) was the lowest. Hydrofluoric acid provides the highest bond strength regardless of whether the surface is polished or not.


2011 ◽  
Vol 82 (1) ◽  
pp. 56-61 ◽  
Author(s):  
Rengin Attin ◽  
Bogna Stawarczyk ◽  
Defne Keçik ◽  
Michael Knösel ◽  
Dirk Wiechmann ◽  
...  

Abstract Objective: To compare the influence of demineralized and variously pretreated demineralized enamel on the shear bond strength of orthodontic brackets. Materials and Methods: Sixty bovine enamel specimens were allocated to five groups (n  =  12). Specimens of group 1 were not demineralized and were not pretreated, but served as controls. The other specimens were demineralized to form artificial carious lesions. Samples from group 2 were only demineralized and were kept untreated in artificial saliva. The other samples were pretreated with highly concentrated fluoride preparations (group 3: Elmex Gelee, 1.23% F; group 4: Clinpro White Varnish, 2.23% F) or with an infiltrating resin (group 5: Icon). After respective pretreatments, brackets were adhesively fixed on all specimens with an adhesive system after etching with 35% phosphoric acid and application of a primer and bracket resin cement (Transbond XT). Bracket shear bond strength was evaluated with a universal testing machine. Statistical analysis was performed by one-way analysis of variance followed by a post-hoc Scheffé test. Results: Shear bond strength in control group 1 was statistically significantly greater compared with that in all other groups. Application of the infiltrating resin Icon (group 5) as pretreatment resulted in statistically significantly greater bond strength as compared with pretreatments with fluoride compounds (groups 3 and 4) and treatment provided without pretreatment (group 2). Groups 2, 3, and 4 did not significantly differ from each other. Conclusion: Pretreatment with the infiltrating resin is a beneficial approach to increasing the shear bond strength of brackets to demineralized enamel.


2020 ◽  
Vol 20 (9) ◽  
pp. 5683-5685
Author(s):  
Min-Kyung Ji ◽  
Jong-Tak Lee ◽  
Eun-Kyung Yim ◽  
Chan Park ◽  
Byung-Kwon Moon ◽  
...  

Various surface treatments on zirconia have been reported for dental porcelain veneer. However, it has not been determined which of these treatments provide the highest bond strength. The purpose of this study is to compare the effect of airborne particle abrasion and atmospheric pressure plasma treatment on the shear bond strength between zirconia and dental porcelain veneer. The groups were divided into four groups according to the surface treatment method: the control group, the atmospheric pressure plasma treated group (group P), the airborne particle abrasion group (group A), the atmospheric pressure plasma treated group after the airborne particle abrasion (group AP). Atmospheric pressure plasma was applied on the specimens using a plasma generator (Plasma JET, POLYBIOTECH Co. Ltd., Gwangju, Korea) and airborne-particle abraded with 110 µm. The characteristics of surface treated zirconia were analyzed by 3D-OP, XRD, XPS and contact angle. The shear bond strength was tested using a universal testing machine. The shear bond strength of group P was significantly increased compared to that of the control group (P < 0.05). The shear bond strength of group AP was significantly increased as compared to group A (P < 0.05). There was no significant difference between the group P and group A (P > 0.05). As a result of this study, the atmospheric pressure plasma treatment showed significantly higher shear bond strength than control group, but similar to the airborne particle abrasion, and the atmospheric pressure plasma treatment after the airborne particle abrasion provided the highest shear bond strength. This study demonstrated that application atmospheric pressure plasma treatment on zirconia may be useful for increasing bond strength between zirconia and dental porcelain veneer.


Sign in / Sign up

Export Citation Format

Share Document