scholarly journals Preparation and Study of Sulfonated Co-Polynaphthoyleneimide Proton-Exchange Membrane for a H2/Air Fuel Cell

Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5297
Author(s):  
Ulyana M. Zavorotnaya ◽  
Igor I. Ponomarev ◽  
Yulia A. Volkova ◽  
Alexander D. Modestov ◽  
Vladimir N. Andreev ◽  
...  

The sulfonated polynaphthoyleneimide polymer (co-PNIS70/30) was prepared by copolymerization of 4,4′-diaminodiphenyl ether-2,2′-disulfonic acid (ODAS) and 4,4’-methylenebisanthranilic acid (MDAC) with ODAS/MDAC molar ratio 0.7/0.3. High molecular weight co-PNIS70/30 polymers were synthesized either in phenol or in DMSO by catalytic polyheterocyclization in the presence of benzoic acid and triethylamine. The titration reveals the ion-exchange capacity of the polymer equal to 2.13 meq/g. The membrane films were prepared by casting polymer solution. Conductivities of the polymer films were determined using both in- and through-plane geometries and reached ~96 and ~60 mS/cm, respectively. The anisotropy of the conductivity is ascribed to high hydration of the surface layer compared to the bulk. SFG NMR diffusometry shows that, in the temperature range from 213 to 353 K, the 1H self-diffusion coefficient of the co-PNIS70/30 membrane is about one third of the diffusion coefficient of Nafion® at the same humidity. However, temperature dependences of proton conductivities of Nafion® and of co-PNIS70/30 membranes are nearly identical. Membrane–electrode assemblies (MEAs) based on co-PNIS70/30 were fabricated by different procedures. The optimal MEAs with co-PNIS70/30 membranes are characterized by maximum output power of ~370 mW/cm2 at 80 °C. It allows considering sulfonated co-PNIS70/30 polynaphthoyleneimides membrane attractive for practical applications.

Processes ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 419 ◽  
Author(s):  
Changjie Li ◽  
Ye Liu ◽  
Bing Xu ◽  
Zheshu Ma

A finite time thermodynamic model of an irreversible proton exchange membrane fuel cell (PEMFC) for vehicle use was established considering the effects of polarization losses and leakage current. Effects of operating parameters, including operating temperature, operating pressure, proton exchange membrane water content, and proton exchange membrane thickness, on the optimal performance of the irreversible PEMFC are numerically studied in detail. When the operating temperature of the PEMFC increases, the optimal performances of PEMFC including output power density, output efficiency, ecological objective function, and ecological coefficient of performance, will be improved. Among them, the optimal ecological objective function increased by 81%. The proton film thickness has little effect on the output efficiency and the ecological of coefficient performance. The maximum output power density increased by 58% as the water content of the proton exchange membrane increased from 50% to the saturation point. The maximum output power density increases with the operating pressure.


2020 ◽  
Vol 20 (12) ◽  
pp. 7793-7799
Author(s):  
M. D. Lutful Kabir ◽  
Subir Paul ◽  
Sang-June Choi ◽  
Hee Jin Kim

A novel blend of membranes made of Nafion® and poly(vinylpyrrolidone) (PVP) was prepared and characterized to investigate its applicability in proton exchange membrane fuel cells (PEMFCs). In addition to being effectively proton conductive, the membranes exhibited better mechanical strength, chemical stability, and adequate water retention ability, as well as ion exchange capacity comparable to that of cast Nafion® membrane. The data obtained from an electrochemical impedance spectroscopy (EIS) fitting of the fuel cells revealed the membrane electrode assemblies (MEAs) made of 0.5 wt.% PVP/Nafion® had lower ohmic and charge transfer resistance compared with that of the Nafion® membrane. The intermolecular interactions and morphology of these membranes were assessed using Fourier-transform infrared spectroscopy and field-emission scanning electron microscopy. The results of the performance curve indicate that the introduction of PVP as a modifier played a vital role in improving membrane performance. Accordingly, this solution-casted polymer electrolyte membrane with suitable PVP content offers a simple way to improve electrochemical, mechanical, and chemical properties, and thereby promises the prospect of use in low-temperature PEMFCs.


2019 ◽  
Vol 9 ◽  
pp. 184798041985315 ◽  
Author(s):  
Abdulrahman Alsaeedi ◽  
Yoshiyuki Show

One of the applications of nano-carbon is a support material of platinum (Pt) catalyst for fuel cells. In this study, the nano-carbon was successfully synthesized by in-liquid plasma in ethanol. The synthesized nano-carbon was characterized by the transmission electron microscope and the Raman spectroscopy. Moreover, the nano-carbon was applied to a support material of Pt catalyst for a proton exchange membrane fuel cell. The formation of the Pt particles on the nano-carbon was also carried out using the in-liquid plasma. The formed Pt/nano-carbon worked as a catalyst of the fuel cell. The fuel cell, fabricated with the Pt/nano-carbon catalyst, generated the maximum output power of 580 mW.


2012 ◽  
Vol 1384 ◽  
Author(s):  
Enrico Gallino ◽  
Marie-Claude Clochard ◽  
Emmanuel Balanzat ◽  
Gerard Gebel ◽  
Arnaud Morin

ABSTRACTIn order to develop a novel proton conductive membrane for proton exchange membrane fuel cell (PEMFC), a poly(vinyl di-fluoride) (PVDF) matrix was irradiated with swift heavy ions (SHI) to obtain radically active cylindrical latent tracks in the polymer film. Styrene was then radiografted and further sulfonated into these irradiated cylindrical regions, leading to sulfonated polystyrene (PVDF-g-PSSA) domains within PVDF. The role of the grafting degree and fluence of irradiation of the PVDF matrix on PVDF-g-PSSA membranes properties (chemical composition, ion exchange capacity) was investigated. Then, a membrane-electrode assembly (MEA) was prepared and fuel cell tests have been performed. Our results clearly show that PVDF-g-PSSA membranes with a grafting degree of about 140%, obtained after irradiation at a fluence of 1010 ions/cm2, exhibit good conductivity values but their durability is limited to about 70 h. Decreasing the fluence leads to membranes with lower grafting yield but with fuel cell performances closer to those of 140% grafted PVDF-g-PSSA membrane and improved mechanical properties. Then, ion track grafting technique is a promising technique to obtain PEM with a good trade-off between proton conductivity and mechanical properties.


2013 ◽  
Vol 10 (4) ◽  
Author(s):  
Sabit Adanur ◽  
Hai Zheng

Sulfonated polyimide (SPI) based membranes for proton exchange membrane fuel cells (PEMFC) have been synthesized by using a one-step high temperature polymerization method. The membranes were characterized with Fourier transform infrared spectra (FTIR), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC); water uptake, ion-exchange capacity, proton conductivity and mechanical stability were tested. The results showed that the membranes had good thermal and mechanical stability and exhibited good performance when they were assembled into membrane electrode assemblies (MEAs). Fuel cell testing was performed. The SPI copolymer based MEA was tested under different hydrogen flow rates to compare with the commercially available Nafion® based MEA.


2013 ◽  
Vol 821-822 ◽  
pp. 971-976
Author(s):  
Ya Ping Hu ◽  
Guang Li

Sulfonated polymer membranes play an important role in PEMFC (proton exchange membrane fuel cell). Series of sulfonated polyamides were prepared by polycondensation of a CF3-containing diamine with various ratios of terephthalic acid and 5-Sodiosulfoisophthalic acid. Sulfonated polyamides were characterized by 1H-NMR, FTIR and intrinsic viscosity. The resulting polyamides exhibited outstanding thermal stability. Membranes were prepared by solution casting, then characterized by determining ion-exchange capacity (IEC), water uptake, swelling ratio, proton conductivity and mechanical properties. With the gradual growth of sulfonic acid groups from 70% to 100% (molar ratio), IEC increased to 1.0223meq/g, and proton conducticity reached up to 3.82×10-2S/cm, while water uptake and swelling ratio remained in proper values. And the tensile strength of membranes was beyond 46.63MPa, which showed very good perspectives in PEMFC applications.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2975
Author(s):  
Zikhona Nondudule ◽  
Jessica Chamier ◽  
Mahabubur Chowdhury

To decrease the cost of fuel cell manufacturing, the amount of platinum (Pt) in the catalyst layer needs to be reduced. In this study, ionomer gradient membrane electrode assemblies (MEAs) were designed to reduce Pt loading without sacrificing performance and lifetime. A two-layer stratification of the cathode was achieved with varying ratios of 28 wt. % ionomer in the inner layer, on the membrane, and 24 wt. % on the outer layer, coated onto the inner layer. To study the MEA performance, the electrochemical surface area (ECSA), polarization curves, and electrochemical impedance spectroscopy (EIS) responses were evaluated under 20, 60, and 100% relative humidity (RH). The stratified MEA Pt loading was reduced by 12% while maintaining commercial equivalent performance. The optimal two-layer design was achieved when the Pt loading ratio between the layers was 1:6 (inner:outer layer). This MEA showed the highest ECSA and performance at 0.65 V with reduced mass transport losses. The integrity of stratified MEAs with lower Pt loading was evaluated with potential cycling and proved more durable than the monolayer MEA equivalent. The higher ionomer loading adjacent to the membrane and the bi-layer interface of the stratified catalyst layer (CL) increased moisture in the cathode CL, decreasing the degradation rate. Using ionomer stratification to decrease the Pt loading in an MEA yielded a better performance compared to the monolayer MEA design. This study, therefore, contributes to the development of more durable, cost-effective MEAs for low-temperature proton exchange membrane fuel cells.


Author(s):  
Britta Mayerhöfer ◽  
Konrad Ehelebe ◽  
Florian Dominik Speck ◽  
Markus Bierling ◽  
Johannes Bender ◽  
...  

Bipolar membrane|electrode interface water electrolyzers (BPEMWE) were found to outperform a proton exchange membrane (PEM) water electrolyzer reference in a similar membrane electrode assembly (MEA) design based on individual porous...


2018 ◽  
Vol 778 ◽  
pp. 275-282
Author(s):  
Noaman Khan ◽  
Saim Saher ◽  
Xuan Shi ◽  
Muhammad Noman ◽  
Mujahid Wasim Durani ◽  
...  

Highly porous ZIF-67 (Zeolitic imidazole framework) has a conductive crystalline metal organic framework (MOF) structure which was served as a precursor and template for the preparation of nitrogen-doped carbon nanotubes (NCNTs) electrocatalysts. As a first step, the chloroplatinic acid, a platinum (Pt) precursor was infiltrated in ZIF-67 with a precise amount to obtain 0.12 mg.cm-2 Pt loading. Later, the infiltrated structure was calcined at 700°C in Ar:H2 (90:10 vol%) gas mixture. Multi-walled nitrogen-doped carbon nanotubes were grown on the surface of ZIF-67 crystals following thermal activation at 700°C. The resulting PtCo-NCNTs electrocatalysts were deposited on Nafion-212 solid electrolyte membrane by spray technique to study the oxygen reduction reaction (ORR) in the presence of H2/O2 gases in a temperature range of 50-70°C. The present study elucidates the performance of nitrogen-doped carbon nanotubes ORR electrocatalysts derived from ZIF-67 and the effects of membrane electrode assembly (MEA) steaming on the performance of proton exchange membrane fuel cell (PEMFC) employing PtCo-NCNTs as ORR electrocatalysts. We observed that the peak power density at 70°C was 450 mW/cm2 for steamed membrane electrode assembly (MEA) compared to 392 mW/cm2 for an identical MEA without steaming.


Sign in / Sign up

Export Citation Format

Share Document