scholarly journals Absorption of Nitrogen during Pulsed Wave L-PBF of 17-4 PH Steel

Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 560
Author(s):  
Ben Brown ◽  
Joseph Newkirk ◽  
Frank Liou

In the fabrication of 17-4 PH by laser powder bed fusion (L-PBF) the well-documented occurrence of large amounts of retained austenite can be attributed to an elevated concentration of nitrogen present in the material. While the effects of continuous wave (CW) laser processing on in-situ nitrogen absorption characteristics have been evaluated, power modulated pulsed wave (PW) laser processing effects have not. In this study the effects of PW L-PBF processing of 17-4 PH on nitrogen absorption, phase composition, and mechanical performance are explored using commercially available PW L-PBF equipment and compared to samples produced by CW L-PBF. PW L-PBF samples fabricated in cover gas conditions with varying amounts of nitrogen demonstrated reduced absorption levels compared to those produced by CW L-PBF with no effects on phase composition and minimal effects on mechanical performance.

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2936
Author(s):  
Seyed Mohammad H. Hojjatzadeh ◽  
Qilin Guo ◽  
Niranjan D. Parab ◽  
Minglei Qu ◽  
Luis I. Escano ◽  
...  

Laser powder bed fusion (LPBF) is an additive manufacturing technology with the capability of printing complex metal parts directly from digital models. Between two available emission modes employed in LPBF printing systems, pulsed wave (PW) emission provides more control over the heat input compared to continuous wave (CW) emission, which is highly beneficial for printing parts with intricate features. However, parts printed with pulsed wave LPBF (PW-LPBF) commonly contain pores, which degrade their mechanical properties. In this study, we reveal pore formation mechanisms during PW-LPBF in real time by using an in-situ high-speed synchrotron x-ray imaging technique. We found that vapor depression collapse proceeds when the laser irradiation stops within one pulse, resulting in occasional pore formation during PW-LPBF. We also revealed that the melt ejection and rapid melt pool solidification during pulsed-wave laser melting resulted in cavity formation and subsequent formation of a pore pattern in the melted track. The pore formation dynamics revealed here may provide guidance on developing pore elimination approaches.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 702
Author(s):  
Suxia Guo ◽  
Weiwei Zhou ◽  
Zhenxing Zhou ◽  
Yuchi Fan ◽  
Wei Luo ◽  
...  

Raw powders are processed in water during the freeze-dry pulsated orifice ejection method (FD-POEM), leading to the inclusion of oxygen impurities. This study proposes a strategy for removing the oxygen content and enhancing the mechanical performance of laser powder bed fusion (L-PBF) builds from powders using carbon nanotubes (CNTs) and H2 reduction. Spherical 1.5 wt.% CNT/Mo composite powders with uniform dispersion were fabricated via FD-POEM. The quantity of MoO2 decreased significantly, and a hexagonally structured Mo2C phase was simultaneously formed in the L-PBF build. The Mo2C with network structure was distributed along the boundaries of equiaxed Mo grains, leading to an increased Vickers hardness of the matrix. This study demonstrates the feasibility of fabricating oxygen-free and high-strength refractory parts during L-PBF for ultrahigh-temperature applications.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 144
Author(s):  
Eslam M. Fayed ◽  
Mohammad Saadati ◽  
Davood Shahriari ◽  
Vladimir Brailovski ◽  
Mohammad Jahazi ◽  
...  

In the present study, multi-objective optimization is employed to develop the optimum heat treatments that can achieve both high-mechanical performance and non-distinctive crystallographic texture of 3D printed Inconel 718 (IN718) fabricated by laser powder bed fusion (LPBF). Heat treatments including homogenization at different soaking times (2, 2.5, 3, 3.5 and 4 h) at 1080 °C, followed by a 1 h solution treatment at 980 °C and the standard aging have been employed. 2.5 h is found to be the homogenization treatment threshold after which there is a depletion of hardening precipitate constituents (Nb and Ti) from the γ-matrix. However, a significant number of columnar grains with a high fraction (37.8%) of low-angle grain boundaries (LAGBs) have still been retained after the 2.5 h homogenization treatment. After a 4 h homogenization treatment, a fully recrystallized IN718 with a high fraction of annealing twins (87.1%) is obtained. 2.5 and 4 h homogenization treatments result in tensile properties exceeding those of the wrought IN718 at both RT and 650 °C. However, considering the texture requirements, it is found that the 4 h homogenization treatment offers the optimum treatment, which can be used to produce IN718 components offering a balanced combination of high mechanical properties and adequate microstructural isotropy.


2017 ◽  
Vol 16 ◽  
pp. 35-48 ◽  
Author(s):  
Giulia Repossini ◽  
Vittorio Laguzza ◽  
Marco Grasso ◽  
Bianca Maria Colosimo

JOM ◽  
2017 ◽  
Vol 69 (12) ◽  
pp. 2725-2730 ◽  
Author(s):  
I. Yadroitsev ◽  
P. Krakhmalev ◽  
I. Yadroitsava

JOM ◽  
2020 ◽  
Vol 73 (1) ◽  
pp. 201-211 ◽  
Author(s):  
Benjamin Gould ◽  
Sarah Wolff ◽  
Niranjan Parab ◽  
Cang Zhao ◽  
Maria Cinta Lorenzo-Martin ◽  
...  

Author(s):  
Chaitanya Krishna Prasad Vallabh ◽  
Yubo Xiong ◽  
Xiayun Zhao

Abstract In-situ monitoring of a Laser Powder-Bed Fusion (LPBF) additive manufacturing process is crucial in enhancing the process efficiency and ensuring the built part integrity. In this work, we present an in-situ monitoring method using an off-axis camera for monitoring layer-wise process anomalies. The in-situ monitoring is performed with a spatial resolution of 512 × 512 pixels, with each pixel representing 250 × 250 μm and a relatively high data acquisition rate of 500 Hz. An experimental study is conducted by using the developed in-situ off-axis method for monitoring the build process for a standard tensile bar. Real-time video data is acquired for each printed layer. Data analytics methods are developed to identify layer-wise anomalies, observe powder bed characteristics, reconstruct 3D part structure, and track the spatter dynamics. A deep neural network architecture is trained using the acquired layer-wise images and tested by images embedded with artificial anomalies. The real-time video data is also used to perform a preliminary spatter analysis along the laser scan path. The developed methodology is aimed to extract as much information as possible from a single set of camera video data. It will provide the AM community with an efficient and capable process monitoring tool for process control and quality assurance while using LPBF to produce high-standard components in industrial (such as, aerospace and biomedical industries) applications.


Sign in / Sign up

Export Citation Format

Share Document