scholarly journals Sizing and Topology Optimization of Trusses Using Genetic Algorithm

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 715
Author(s):  
Ingrid Delyová ◽  
Peter Frankovský ◽  
Jozef Bocko ◽  
Peter Trebuňa ◽  
Jozef Živčák ◽  
...  

Genetic algorithms are a robust method for a solution of wide variety optimization problems. It explores a big space of design variables in order to find the best solution. From the point of view of a user, the algorithm requires the encoding of design variables into the form of strings and the procedure of optimization uses them for optimization. Here, for the structural engineer, it is crucial to find the form of objective function including the constraints of the task and also to avoid critical states during the solution of structural responses. This paper presents the use of genetic algorithm for solving truss structures. The use of genetic algorithm approach is shown on three cases of truss structures.

Author(s):  
ZOHEIR EZZIANE

Probabilistic and stochastic algorithms have been used to solve many hard optimization problems since they can provide solutions to problems where often standard algorithms have failed. These algorithms basically search through a space of potential solutions using randomness as a major factor to make decisions. In this research, the knapsack problem (optimization problem) is solved using a genetic algorithm approach. Subsequently, comparisons are made with a greedy method and a heuristic algorithm. The knapsack problem is recognized to be NP-hard. Genetic algorithms are among search procedures based on natural selection and natural genetics. They randomly create an initial population of individuals. Then, they use genetic operators to yield new offspring. In this research, a genetic algorithm is used to solve the 0/1 knapsack problem. Special consideration is given to the penalty function where constant and self-adaptive penalty functions are adopted.


2011 ◽  
Vol 66-68 ◽  
pp. 1167-1172 ◽  
Author(s):  
Zhuo Jun Xie ◽  
Ping Xu ◽  
Yu Qi Luo

As it is tough for the current energy absorb devices of urban vehicles to meet the crashworthiness requirements in the collision scenario of 25km/h, a methodology to improve the general crashworthiness is presented. A multi-criteria optimization, with the deformations and accelerations of all cars as the design functions and the force characteristics of end structures of cars as design variables, is defined and the Pareto Fonts are obtained. Then defining energy absorbed as design function, a single criteria optimization is made and the specific goal is achieved. No explicit relationship could be found between the design variables and the design functions, so a crash model of a train with velocity of 25km/h colliding to another train stopped is built and the genetic algorithm is chosen to solve the optimization problems. The results indicate that the crashworthiness performance of the trains is significantly improved and the crashworthiness requirements could be reached finally.


Author(s):  
Ali Al-Alili ◽  
Yunho Hwang ◽  
Reinhard Radermacher

In order for the solar air conditioners (A/Cs) to become a real alternative to the conventional systems, their performance and total cost has to be optimized. In this study, an innovative hybrid solar A/C was simulated using the transient systems simulation (TRNSYS) program, which was coupled with MATLAB in order to carry out the optimization study. Two optimization problems were formulated with the following design variables: collector area, collector mass flow rate, storage tank volume, and number of batteries. The Genetic Algorithm (GA) was selected to find the global optimum design for the lowest electrical consumption. To optimize the two objective functions simultaneously, a Multi-Objective Genetic Algorithm (MOGA) was used to find the Pareto front within the design variables’ bounds while satisfying the constraints. The optimized design was also compared to a standard vapor compression cycle. The results show that coupling TRNSYS and MATLAB expands TRNSYS optimization capability in solving more complicated optimization problems.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Yue Wu ◽  
Qingpeng Li ◽  
Qingjie Hu ◽  
Andrew Borgart

Firefly Algorithm (FA, for short) is inspired by the social behavior of fireflies and their phenomenon of bioluminescent communication. Based on the fundamentals of FA, two improved strategies are proposed to conduct size and topology optimization for trusses with discrete design variables. Firstly, development of structural topology optimization method and the basic principle of standard FA are introduced in detail. Then, in order to apply the algorithm to optimization problems with discrete variables, the initial positions of fireflies and the position updating formula are discretized. By embedding the random-weight and enhancing the attractiveness, the performance of this algorithm is improved, and thus an Improved Firefly Algorithm (IFA, for short) is proposed. Furthermore, using size variables which are capable of including topology variables and size and topology optimization for trusses with discrete variables is formulated based on the Ground Structure Approach. The essential techniques of variable elastic modulus technology and geometric construction analysis are applied in the structural analysis process. Subsequently, an optimization method for the size and topological design of trusses based on the IFA is introduced. Finally, two numerical examples are shown to verify the feasibility and efficiency of the proposed method by comparing with different deterministic methods.


Author(s):  
Daniel Shaefer ◽  
Scott Ferguson

This paper demonstrates how solution quality for multiobjective optimization problems can be improved by altering the selection phase of a multiobjective genetic algorithm. Rather than the traditional roulette selection used in algorithms like NSGA-II, this paper adds a goal switching technique to the selection operator. Goal switching in this context represents the rotation of the selection operator among a problem’s various objective functions to increase search diversity. This rotation can be specified over a set period of generations, evaluations, CPU time, or other factors defined by the designer. This technique is tested using a set period of generations before switching occurs, with only one objective considered at a time. Two test cases are explored, the first as identified in the Congress on Evolutionary Computation (CEC) 2009 special session and the second a case study concerning the market-driven design of a MP3 player product line. These problems were chosen because the first test case’s Pareto frontier is continuous and concave while being relatively easy to find. The second Pareto frontier is more difficult to obtain and the problem’s design space is significantly more complex. Selection operators of roulette and roulette with goal switching were tested with 3 to 7 design variables for the CEC 09 problem, and 81 design variables for the MP3 player problem. Results show that goal switching improves the number of Pareto frontier points found and can also lead to improvements in hypervolume and/or mean time to convergence.


2016 ◽  
Vol 138 (3) ◽  
Author(s):  
Ali Al-Alili ◽  
Yunho Hwang ◽  
Reinhard Radermacher

Solar air conditioners (A/Cs) have attracted much attention in research, but their performance and cost have to be optimized in order to become a real alternative to conventional A/C systems. In this study, a hybrid solar A/C is simulated using the transient systems simulation program(trnsys), which is coupled with matlab in order to carry out the optimization study. The trnsys model is experimentally validated prior to the optimization study. Two optimization problems are formulated with the following design variables: solar collector area, solar collector mass flow rate, solar thermal energy storage volume, and solar electrical energy storage size. The genetic algorithm (GA) is selected to solve the single-objective optimization problem and find the global optimum design for the lowest electrical consumption. To optimize the two objective functions simultaneously, energy consumption and total cost (TC), a multi-objective genetic algorithm (MOGA) is used to find the Pareto curve within the design variables' bounds while satisfying the constraints. The overall cost of the optimized solar A/C design is also compared to a standard vapor compression cycle (VCC). The results show that coupling trnsys and matlab expands trnsys optimization capability in solving more complex optimization problems. The results also show that the optimized solar hybrid A/C is not very competitive when the electricity prices are low and no governmental support is provided.


2021 ◽  
Vol 12 (1) ◽  
pp. 407
Author(s):  
Tianshan Dong ◽  
Shenyan Chen ◽  
Hai Huang ◽  
Chao Han ◽  
Ziqi Dai ◽  
...  

Truss size and topology optimization problems have recently been solved mainly by many different metaheuristic methods, and these methods usually require a large number of structural analyses due to their mechanism of population evolution. A branched multipoint approximation technique has been introduced to decrease the number of structural analyses by establishing approximate functions instead of the structural analyses in Genetic Algorithm (GA) when GA addresses continuous size variables and discrete topology variables. For large-scale trusses with a large number of design variables, an enormous change in topology variables in the GA causes a loss of approximation accuracy and then makes optimization convergence difficult. In this paper, a technique named the label–clip–splice method is proposed to improve the above hybrid method in regard to the above problem. It reduces the current search domain of GA gradually by clipping and splicing the labeled variables from chromosomes and optimizes the mixed-variables model efficiently with an approximation technique for large-scale trusses. Structural analysis of the proposed method is extremely reduced compared with these single metaheuristic methods. Numerical examples are presented to verify the efficacy and advantages of the proposed technique.


Author(s):  
David W. Zingg ◽  
Marian Nemec ◽  
Thomas H. Pulliam

A genetic algorithm is compared with a gradient-based (adjoint) algorithm in the context of several aerodynamic shape optimization problems. The examples include singlepoint and multipoint optimization problems, as well as the computation of a Pareto front. The results demonstrate that both algorithms converge reliably to the same optimum. Depending on the nature of the problem, the number of design variables, and the degree of convergence, the genetic algorithm requires from 5 to 200 times as many function evaluations as the gradientbased algorithm.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Valerii Tkachuk

We present a new evolutionary algorithm on the basis of quantum computations technology for solving optimization problems. The algorithm is built using many-valued quantum logic concept, which is more prospective from the computing power’s point of view. We compare the suggested algorithm to the traditional quantum genetic algorithm to demonstrate its high effectiveness on the example of test function global optimization problems. The advantages can be observed in the running time, the convergence speed, and the solution precision. The proposed implementation for the algorithm of quantum gate operator has an adaptive nature and does not require a lookup table. The role and the influence mechanism of the quantum disaster operator on the proposed algorithm effectiveness are also analyzed.


2017 ◽  
Vol 5 (2) ◽  
pp. 198-214 ◽  
Author(s):  
Ghanshyam G. Tejani ◽  
Vimal J. Savsani ◽  
Vivek K. Patel ◽  
Poonam V. Savsani

Abstract In this study, simultaneous size, shape, and topology optimization of planar and space trusses are investigated. Moreover, the trusses are subjected to constraints for element stresses, nodal displacements, and kinematic stability conditions. Truss Topology Optimization (TTO) removes the superfluous elements and nodes from the ground structure. In this method, the difficulties arise due to unacceptable and singular topologies; therefore, the Grubler's criterion and the positive definiteness are used to handle such issue. Moreover, the TTO is challenging due to its search space, which is implicit, non-convex, non-linear, and often leading to divergence. Therefore, mutation-based metaheuristics are proposed to investigate them. This study compares the performance of four improved metaheuristics (viz. Improved Teaching–Learning-Based Optimization (ITLBO), Improved Heat Transfer Search (IHTS), Improved Water Wave Optimization (IWWO), and Improved Passing Vehicle Search (IPVS)) and four basic metaheuristics (viz. TLBO, HTS, WWO, and PVS) in order to solve structural optimization problems. Highlights Improvements in four recently designed metaheuristics. Use of random mutation-based search technique. Applications on challenging/benchmark problems of simultaneous size, shape, and topology optimization of truss structures. Improvements effective over basic metaheuristics.


Sign in / Sign up

Export Citation Format

Share Document