scholarly journals Mechanical Performance of Artificial Hip Stems Manufactured by Hot Forging and Selective Laser Melting Using Biocompatible Ti-15Zr-4Nb Alloy

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 732
Author(s):  
Yoshimitsu Okazaki ◽  
Jun Mori

We investigated the microstructures, tensile properties, fatigue strengths, and durability limits of hot-forged Ti-15Zr-4Nb (Ti-15-4) alloy artificial hip stems. These properties were compared with those of Ti-15Zr-4Nb-4Ta (Ti-15-4-4) and Ti-6Al-4V (Ti-6-4) alloy stems annealed after selective laser melting. The tensile and fatigue properties of test specimens cut from Ti-15-4 stems annealed after hot forging were excellent compared with those of the Alloclassic Zweymüller Stepless (SL) stem, which is used globally. The 0.2% proof stress (σ0.2%PS), ultimate tensile strength (σUTS), total elongation (TE) at breaking, and fatigue strength (σFS) after 107 cycles were 919 ± 10, 983 ± 9 MPa, 21 ± 1%, and 855 ± 14 MPa, respectively. The durability limit (PD) after 5 × 106 cycles of Ti-15-4 stems was excellent compared with that of the SL stem. The σUTS values of 90°- and 0°-direction-built Ti-15-4-4 rods were 1032 ± 1 and 1022 ± 2 MPa, and their TE values were 14 ± 1% and 16 ± 1%, respectively. The σFS values of annealed 90°-direction-built Ti-15-4-4 and Ti-6-4 rods were 640 ± 11 and 680 ± 37 MPa, respectively, which were close to that of the wrought Ti-15-4 rod (785 ± 17 MPa). These findings indicate that the hot forging and selective laser melting (SLM) techniques can also be applied to the manufacture of artificial hip prostheses. In particular, it was clarified that selective laser melting using Ti-15-4-4 and Ti-6-4 powders is useful for the low-cost manufacturing of custom-made artificial joint prostheses and other prosthetic implants.

2021 ◽  
Vol 144 ◽  
pp. 107423
Author(s):  
Qing-song Song ◽  
Ying Zhang ◽  
Yun-feng Wei ◽  
Xin-yi Zhou ◽  
Yi-fu Shen ◽  
...  

2020 ◽  
Vol 781 ◽  
pp. 139227 ◽  
Author(s):  
Xingchen Yan ◽  
Chaoyue Chen ◽  
Cheng Chang ◽  
Dongdong Dong ◽  
Ruixin Zhao ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4564 ◽  
Author(s):  
Zhi Wang ◽  
Raghunandan Ummethala ◽  
Neera Singh ◽  
Shengyang Tang ◽  
Challapalli Suryanarayana ◽  
...  

The laser-based powder bed fusion (LBPF) process or commonly known as selective laser melting (SLM) has made significant progress since its inception. Initially, conventional materials like 316L, Ti6Al4V, and IN-718 were fabricated using the SLM process. However, it was inevitable to explore the possible fabrication of the second most popular structural material after Fe-based alloys/steel, the Al-based alloys by SLM. Al-based alloys exhibit some inherent difficulties due to the following factors: the presence of surface oxide layer, solidification cracking during melt cooling, high reflectivity from the surface, high thermal conductivity of the metal, poor flowability of the powder, low melting temperature, etc. Researchers have overcome these difficulties to successfully fabricate the different Al-based alloys by SLM. However, there exists no review dealing with the fabrication of different Al-based alloys by SLM, their fabrication issues, microstructure, and their correlation with properties in detail. Hence, the present review attempts to introduce the SLM process followed by a detailed discussion about the processing parameters that form the core of the alloy development process. This is followed by the current research status on the processing of Al-based alloys and microstructure evaluation (including defects, internal stresses, etc.), which are dealt with on the basis of individual Al-based series. The mechanical properties of these alloys are discussed in detail followed by the other important properties like tribological properties, fatigue properties, etc. Lastly, an outlook is given at the end of this review.


2021 ◽  
Vol 60 (1) ◽  
pp. 894-911
Author(s):  
Yun Zhai ◽  
Sibo He ◽  
Lei Lei ◽  
Tianmin Guan

Abstract The stress shielding effect is a critical issue for implanted prosthesis due to the difference in elastic modulus between the implanted material and the human bone. The adjustment of the elastic modulus of implants by modification of the lattice structure is the key to the research in the field of implanted prosthesis. Our work focuses on the basic unit structure of octahedron Ti6Al4V. The equivalent elastic modulus and equivalent density of porous structure are optimized according to the mechanical properties of human bone tissue by adjusting the edge diameter and side length of octahedral lattice. Macroscopic long-range ordered arrangement of lattice structures is fabricated by selective laser melting (SLM) technology. Finite element simulation is performed to calculate the mechanical property of octahedron Ti6Al4V. Scanning electronic microscopy is applied to observe the microstructure of octahedron alloy and its cross section morphology of fracture. Standard compression test is performed for the stress–strain behavior of the specimen. Our results show that the octahedral lattice with the edge diameter of 0.4 mm and unit cell length of 1.5 mm has the best mechanical property which is close to the human bone. The value of equivalent elastic modulus increases with the increase in the edge diameter. The SLM technology proves to be an effective processing way for the fabrication of complex microstructures with porosity. In addition, the specimen exhibits isotropic mechanical performance and homogeneity which significantly meet the requirement of implanted prosthetic medical environment.


Sign in / Sign up

Export Citation Format

Share Document