scholarly journals Ductile-to-Brittle Transition and Brittle Fracture Stress of Ultrafine-Grained Low-Carbon Steel

Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1634
Author(s):  
Tadanobu Inoue ◽  
Hai Qiu ◽  
Rintaro Ueji ◽  
Yuuji Kimura

Ductile-to-brittle transition (DBT) temperature and brittle fracture stress, σF, are important toughness criteria for structural materials. In this paper, low-carbon steels with an ultrafine elongated grain (UFEG) structure (transverse grain size 1.2 μm) and with two ferrite (α)- -pearlite structure with grain sizes 10 µm and 18 µm were prepared. The UFEG steel was fabricated using multipass warm biaxial rolling. The tensile tests with a cylindrical specimen and three-point bending tests with a single-edge-notched specimen were performed at −196 °C. The local stress near the notch was quantitatively calculated via finite element analysis (FEA). The σF for each sample was quantified based on the experimental results and FEA. The relationship between σF and dα in the wide range of 1.0 μm to 138 μm was plotted, including data from past literature. Finally, the conditions of grain size and temperature that cause DBT fracture in low-carbon steel were shown via the stress−d−1/2 map. The results quantitatively showed the superiority of α grain size for brittle fracture.

Author(s):  
І. О Vakulenko ◽  
D. M Bolotova ◽  
S. V Proidak ◽  
B Kurt ◽  
A. E Erdogdu ◽  
...  

Purpose. The aim of this work is to assess the effect of ferrite grain size of low-carbon steel on the development of strain hardening processes in the area of nucleation and propagation of deformation bands. Methodology. Low-carbon steels with a carbon content of 0.06–0.1% C in various structural states were used as the material for study. The sample for the study was a wire with a diameter of 1mm. The structural studies of the metal were carried out using an Epiquant light microscope. Ferrite grain size was determined using quantitative metallographic techniques. Different ferrite grain size was obtained as a result of combination of thermal and termo mechanical treatment. Vary by heating temperature and the cooling rate, using cold plastic deformation and subsequent annealing, made it possible to change the ferrite grain size at the level of two orders of magnitude. Deformation curves were obtained during stretching the samples on the Instron testing machine. Findings. Based on the analysis of stretching curves of low-carbon steels with different ferrite grain sizes, it has been established that the initiation and propagation of plastic deformation in the jerky flow area is accompanied by the development of strain hardening processes. The study of the nature of increase at dislocation density depending on ferrite grain size of low-carbon steel, starting from the moment of initiation of plastic deformation, confirmed the existence of relationship between the development of strain hardening at the area of jerky flow and the area of parabolic hardening curve. Originality. One of the reasons for decrease in Luders deformation with an increase of ferrite grain size of low-carbon steel is an increase in strain hardening indicator, which accelerates decomposition of uniform dislocations distribution in the front of deformation band. The flow stress during initiation of plastic deformation is determined by the additive contribution from the frictional stress of the crystal lattices, the state of ferrite grain boundaries, and the density of mobile dislocations. It was found that the size of dislocation cell increases in proportion to the diameter of ferrite grain, which facilitates the development of dislocation annihilation during plastic deformation. Practical value. Explanation of qualitative dependence of the influence of ferrite grain size of a low-carbon steel on the strain hardening degree and the magnitude of Luders deformation will make it possible to determine the optimal structural state of steels subjected to cold plastic deformation.


Alloy Digest ◽  
1987 ◽  
Vol 36 (2) ◽  

Abstract SAE 1020 is a low-carbon steel combining good machinability, workability and weldability. It is carburized for use in case-hardened components and it is used for a wide range of applications in the hot-worked, cold-worked, normalized or quenched-and-tempered conditions. Its many uses include bolts, rods, plate applications, machinery components, case-hardened parts, spinning tools and trimming dies. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on low temperature performance and corrosion resistance as well as heat treating, machining, joining, and surface treatment. Filing Code: CS-113. Producer or source: Carbon steel mills.


2005 ◽  
Vol 495-497 ◽  
pp. 1591-1596 ◽  
Author(s):  
Vladimir Luzin ◽  
S. Banovic ◽  
Thomas Gnäupel-Herold ◽  
Henry Prask ◽  
R.E. Ricker

Low carbon steel (usually in sheet form) has found a wide range of applications in industry due to its high formability. The inner and outer panels of a car body are good examples of such an implementation. While low carbon steel has been used in this application for many decades, a reliable predictive capability of the forming process and “springback” has still not been achieved. NIST has been involved in addressing this and other formability problems for several years. In this paper, texture produced by the in-plane straining and its relationship to springback is reported. Low carbon steel sheet was examined in the as-received condition and after balanced biaxial straining to 25%. This was performed using the Marciniak in-plane stretching test. Both experimental measurements and numerical calculations have been utilized to evaluate anisotropy and evolution of the elastic properties during forming. We employ several techniques for elastic property measurements (dynamic mechanical analysis, static four point bending, mechanical resonance frequency measurements), and several calculation schemes (orientation distribution function averaging, finite element analysis) which are based on texture measurements (neutron diffraction, electron back scattering diffraction). The following objectives are pursued: a) To test a range of different experimental techniques for elastic property measurements in sheet metals; b) To validate numerical calculation methods of the elastic properties by experiments; c) To evaluate elastic property changes (and texture development) during biaxial straining. On the basis of the investigation, recommendations are made for the evaluation of elastic properties in textured sheet metal.


2017 ◽  
Vol 740 ◽  
pp. 93-99
Author(s):  
Muhammad Hafizuddin Jumadin ◽  
Bulan Abdullah ◽  
Muhammad Hussain Ismail ◽  
Siti Khadijah Alias ◽  
Samsiah Ahmad

Increase of soaking time contributed to the effectiveness of case depth formation, hardness properties and carbon content of carburized steel. This paper investigates the effect of different soaking time (7-9 hours) using powder and paste compound to the carburized steel. Low carbon steels were carburized using powder and paste compound for 7, 8 and 9 hours at temperature 1000°C. The transformation of microstructure and formation carbon rich layer was observed under microscope. The microhardness profiles were analyzed to investigate the length of case depth produced after the carburizing process. The increment of carbon content was considered to find the correlation between types of carburizing compound with time. Results shows that the longer carburized steel was soaked, the higher potential in formation of carbon rich layer, case depth and carbon content, which led to better hardness properties for carburized low carbon steel. Longer soaking time, 9 hours has a higher dispersion of carbon up to 41%-51% compare to 8 hours and 7 hours. By using paste carburizing, it has more potential of carbon atom to merge the microstructure to transform into cementite (1.53 wt% C) compare to powder (0.97 wt% C), which increases the hardness of carburized steel (13% higher).


1987 ◽  
Vol 109 (3) ◽  
pp. 257-264 ◽  
Author(s):  
E. M. Kopalinsky ◽  
P. L. B. Oxley

Experiments show that the cold working of low carbon steel work materials can improve their machinability by reducing cutting forces and improving surface finish and tool life. The somewhat paradoxical result of reducing cutting forces by cold working a material so that its hardness is increased is explained in this paper by using a machining theory which takes account of the flow stress properties of the work material and can thus allow for the effects of cold working.


Sign in / Sign up

Export Citation Format

Share Document