scholarly journals Characterization of High-Temperature Superconductor Bulks for Electrical Machine Application

Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1636
Author(s):  
Bruno Douine ◽  
Kevin Berger ◽  
Nickolay Ivanov

High-temperature superconducting (HTS) bulks can be used in electrical applications. Experimental characterization of large-size HTS bulks is a tricky issue. The relevant parameters for their application were directly measured in this study. This paper has three main aims. Firstly, features of YBaCuO bulks are presented. Secondly, an electrical motor application is developed using magnetic field shielding and trapping. Thirdly, the HTS bulks are characterized. Several classical methods were used, which are mainly magnetic methods only available for small samples. The complete penetration magnetic field and the critical current density were found to be the main parameters relevant for applications. An innovative entire HTS bulk characterization method is presented. This characterization method is useful for end users and engineers to better implement HTS bulks.

2021 ◽  
Vol 11 (6) ◽  
pp. 2741
Author(s):  
Sergey Zanegin ◽  
Nikolay Ivanov ◽  
Vasily Zubko ◽  
Konstantin Kovalev ◽  
Ivan Shishov ◽  
...  

The article is devoted to the study of losses in devices based on high-temperature superconductors of the 2nd generation. The complexity of the devices under study increases from a single rack coil to a winding assembled from several coils, and finally to an electric machine operating in generator mode. This is the way to experimentally study the behavior of 2nd generation high temperature superconductor (2G HTS) carrying a transport current in various conditions: self-field, external DC, and AC magnetic field. Attention is also paid to the losses in the winding during its operation from the inverter, which simulates the operating conditions in the motor mode of a propulsion system.


2020 ◽  
Vol 92 (2) ◽  
pp. 20601
Author(s):  
Abdelaziz Labrag ◽  
Mustapha Bghour ◽  
Ahmed Abou El Hassan ◽  
Habiba El Hamidi ◽  
Ahmed Taoufik ◽  
...  

It is reported in this paper on the thermally assisted flux flow in epitaxial YBa2Cu3O7-δ deposited by Laser ablation method on the SrTiO3 substrate. The resistivity measurements ρ (T, B) of the sample under various values of the magnetic field up to 14T in directions B∥ab-plane and B∥c-axis with a dc weak transport current density were investigated in order to determine the activation energy and then understand the vortex dynamic phenomena and therefore deduce the vortex phase diagram of this material. The apparent activation energy U0 (B) calculated using an Arrhenius relation. The measured results of the resistivity were then adjusted to the modified thermally assisted flux flow model in order to account for the temperature-field dependence of the activation energy U (T, B). The obtained values from the thermally assisted activation energy, exhibit a behavior similar to the one showed with the Arrhenius model, albeit larger than the apparent activation energy with ∼1.5 order on magnitude for both cases of the magnetic field directions. The vortex glass model was also used to obtain the vortex-glass transition temperature from the linear fitting of [d ln ρ/dT ] −1 plots. In the course of this work thanks to the resistivity measurements the upper critical magnetic field Hc2 (T), the irreversibility line Hirr (T) and the crossover field HCrossOver (T) were located. These three parameters allowed us to establish a phase diagram of the studied material where limits of each vortex phase are sketched in order to optimize its applicability as a practical high temperature superconductor used for diverse purposes.


2009 ◽  
Vol 289-292 ◽  
pp. 303-309
Author(s):  
N.M. Nemes ◽  
C. Visani ◽  
J. Garcia-Barriocanal ◽  
F.Y. Bruno ◽  
Z. Sefrioui ◽  
...  

We report on the interplay between ferromagnetism and superconductivity in trilayers La0.7Ca0.3MnO3/YBa2Cu3O7/La0.7Ca0.3MnO3 made of half metallic manganite and high temperature superconductor cuprate. Samples with a fully oxygenated cuprate show a magnetic field interval where the magnetizations of the manganite are aligned antiparallel. A considerable magnetoresistance accompanies the switching between magnetization configurations (parallel vs. antiparallel) of the manganite moments. Suppression of the free carrier density of the cuprate which occurs upon oxygen depletion, results in deep modifications in the shape of the normal state hysteresis loops indicating that there may be a magnetic coupling mediated by free carrier density of the cuprate. This result outlines the importance of quasiparticle transmission in the interplay between ferromagnetism and superconductivity in this kind of samples.


2014 ◽  
Vol 113 ◽  
pp. 1261-1268 ◽  
Author(s):  
Laia Miró ◽  
M. Elena Navarro ◽  
Priyamvadha Suresh ◽  
Antoni Gil ◽  
A. Inés Fernández ◽  
...  

1987 ◽  
Vol 01 (02) ◽  
pp. 413-417
Author(s):  
J.D. Hettinger ◽  
A.G. Swanson ◽  
J.S. Brooks ◽  
Y.P. Ma

We have measured the transition temperature, critical field, magnetoresistance, and Hall effect for the high temperature superconductor Y-Ba-Cu-O in magnetic fields up to 23T in the temperature range 4.2 to 125K. Meissner studies at zero magnetic field were also performed in some cases. We find a strong dependence of these parameters on the relative percentage of the correct phase of Y-Ba-Cu-O in the sample. We report new results on magnetoresistance and Hall effect in these materials.


2019 ◽  
Vol 46 (11) ◽  
pp. 5152-5158
Author(s):  
Jarrad Begg ◽  
Sarah J. Alnaghy ◽  
Trent Causer ◽  
Thahabah Alharthi ◽  
Armia George ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document