scholarly journals Research on High-Value Utilization of Carbon Derived from Tobacco Waste in Supercapacitors

Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1714
Author(s):  
Zhenrui Huang ◽  
Caiyun Qin ◽  
Jun Wang ◽  
Lin Cao ◽  
Zhuwen Ma ◽  
...  

Large quantities of tobacco stalks residues are generated and discarded as crop waste or combusted directly every year. Thus, we need to find an appropriate way to dispose of this type of waste and recycle it. The conversion of biomass waste into electrode materials for supercapacitors is entirely in line with the concept of sustainability and green. In this paper, tobacco-stalk-based, porous activated carbon (TC) was successfully synthesized by high-temperature and high-pressure hydrothermal pre-carbonization and KOH activation. The synthesized TC had a high pore volume and a large surface area of 1875.5 m2 g−1, in which there were many mesopores and interconnected micro-/macropores. The electrochemical test demonstrated that TC-1 could reach a high specific capacitance of up to 356.4 F g−1 at a current density of 0.5 A g−1, which was carried in 6M KOH. Additionally, a symmetrical supercapacitor device was fabricated by using TC-1 as the electrode, which delivered a high energy density up to 10.4 Wh kg−1 at a power density of 300 W kg−1, and excellent long-term cycling stability (92.8% of the initial capacitance retention rate after 5000 cycles). Therefore, TC-1 is considered to be a promising candidate for high-performance supercapacitor electrode materials and is a good choice for converting tobacco biomass waste into a resource.

2020 ◽  
Vol 15 (1) ◽  
pp. 147-153
Author(s):  
Yucai Li ◽  
Yan Zhao ◽  
Dong Zhang ◽  
Shiwei Song ◽  
Jian Wang ◽  
...  

Electrochemical performance of the electrode materials is seriously dependent on the structure and morphology of the electrode material. In this work, the nanoflower-like Co3O4 samples are successfully prepared on Ni foam via a facile hydrothermal method. The as-fabricated Co3O4 samples exhibit superior electrochemical performance with a high specific capacitance of 382.6 C g-1 at 1 A g-1 and excellent capacitance retention. In addition, the as-fabricated device presents a high energy density of 23.6 Wh kg-1 at a power density of 508.6 W kg-1 and excellent cycle stability with a capacitance retention of 81.2% after 10000 cycles, indicating a promising application as electrodes for energy storage device.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3355
Author(s):  
Mingshan Sun ◽  
Xinan Chen ◽  
Shutian Tan ◽  
Ying He ◽  
Petr Saha ◽  
...  

Herein, a three-dimensional (3D) Fe3O4@C composite with hollow porous structure is prepared by simple solution method and calcination treatment with biomass waste rape pollen (RP) as a carbon source, which is served as an anode of Li-ion capacitor (LIC). The 3D interconnected porous structure and conductive networks facilitate the transfer of ion/electron and accommodate the volume changes of Fe3O4 during the electrochemical reaction process, which leads to the excellent performance of the Fe3O4@C composite electrode. The electrochemical analysis demonstrates that the hybrid LIC fabricated with Fe3O4@C as the anode and activated carbon (AC) as the cathode can operate at a voltage of 4.0 V and exhibit a high energy density of 140.6 Wh kg−1 at 200 W kg−1 (52.8 Wh kg−1 at 10 kW kg−1), along with excellent cycling stability, with a capacity retention of 83.3% over 6000 cycles. Hence, these encouraging results indicate that Fe3O4@C has great potential in developing advanced LICs electrode materials for the next generation of energy storage systems.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1143 ◽  
Author(s):  
Anil Yedluri ◽  
Tarugu Anitha ◽  
Hee-Je Kim

Hierarchical NiMoO4/NiMoO4 nanoflowers were fabricated on highly conductive flexible nickel foam (NF) substrates using a facile hydrothermal method to achieve rapid charge-discharge ability, high energy density, long cycling lifespan, and higher flexibility for high-performance supercapacitor electrode materials. The synthesized composite electrode material, NF/NiMoO4/NiMoO4 with a nanoball-like NF/NiMoO4 structure on a NiMoO4 surface over a NF substrate, formed a three-dimensional interconnected porous network for high-performance electrodes. The novel NF/NiMoO4/NiMoO4 nanoflowers not only enhanced the large surface area and increased the electrochemical activity, but also provided an enhanced rapid ion diffusion path and reduced the charge transfer resistance of the entire electrode effectively. The NF/NiMoO4/NiMoO4 composite exhibited significantly improved supercapacitor performance in terms of a sustained cycling life, high specific capacitance, rapid charge-discharge capability, high energy density, and good rate capability. Electrochemical analysis of the NF/NiMoO4/NiMoO4 nanoflowers fabricated on the NF substrate revealed ultra-high electrochemical performance with a high specific capacitance of 2121 F g−1 at 12 mA g−1 in a 3 M KOH electrolyte and 98.7% capacitance retention after 3000 cycles at 14 mA g−1. This performance was superior to the NF/NiMoO4 nanoball electrode (1672 F g−1 at 12 mA g−1 and capacitance retention 93.4% cycles). Most importantly, the SC (NF/NiMoO4/NiMoO4) device displayed a maximum energy density of 47.13 W h kg−1, which was significantly higher than that of NF/NiMoO4 (37.1 W h kg−1). Overall, the NF/NiMoO4/NiMoO4 composite is a suitable material for supercapacitor applications.


2018 ◽  
Vol 5 (1) ◽  
pp. 171186 ◽  
Author(s):  
Guofu Ma ◽  
Fengting Hua ◽  
Kanjun Sun ◽  
Enke Fenga ◽  
Hui Peng ◽  
...  

The electrochemical performance of an energy conversion and storage device like the supercapacitor mainly depends on the microstructure and morphology of the electrodes. In this paper, to improve the capacitance performance of the supercapacitor, the all-pseudocapacitive electrodes of lamella-like Bi 18 SeO 29 /BiSe as the negative electrode and flower-like Co 0.85 Se nanosheets as the positive electrode are synthesized by using a facile low-temperature one-step hydrothermal method. The microstructures and morphology of the electrode materials are carefully characterized, and the capacitance performances are also tested. The Bi 18 SeO 29 /BiSe and Co 0.85 Se have high specific capacitance (471.3 F g –1 and 255 F g –1 at 0.5 A g –1 ), high conductivity, outstanding cycling stability, as well as good rate capability. The assembled asymmetric supercapacitor completely based on the pseudocapacitive electrodes exhibits outstanding cycling stability (about 93% capacitance retention after 5000 cycles). Moreover, the devices exhibit high energy density of 24.2 Wh kg –1 at a power density of 871.2 W kg –1 in the voltage window of 0–1.6 V with 2 M KOH solution.


2021 ◽  
Author(s):  
Yucai Li ◽  
Yan Zhao ◽  
Shiwei Song ◽  
Jian wang

Abstract Core-shell structured NiCo2S4@NiMoO4 is considered to be one of the most promising electrode materials for supercapacitors due to its high specific capacitance and excellent cycle performance. In this work, we report NiCo2S4@NiMoO4 nanosheets on Ni foam by two-step fabricated method. The as-obtained product has high capacitance of 1102.5 F g− 1 at 1 A g− 1. The as-assembled supercapacitor has also a high energy density of 37.6 W h kg− 1 and superior cycle performance with 85% capacitance retention. The electrode materials reported here might exhibits potential applications in future energy storage devices.


NANO ◽  
2019 ◽  
Vol 14 (04) ◽  
pp. 1950049 ◽  
Author(s):  
Jingjing Lin ◽  
Song Yan ◽  
Xiaojie Zhang ◽  
Yueran Liu ◽  
Jun Lian ◽  
...  

Holey Fe-Anderson-type polyoxometalate/polyaniline/graphene (PPG) hybrid materials were first prepared by anchoring Anderson-type polyoxometalates [FeMo6O[Formula: see text]H6][Formula: see text] (FeMo[Formula: see text] onto graphene modified with polyaniline via a facile hydrothermal treatment. The as-prepared materials exhibited an excellent electrochemical performance with a high specific capacitance of 1366 F g[Formula: see text] at 1 A g[Formula: see text] and outstanding cycling stability (97.6% capacitance retention after 5000 cycle times). The uptake of polyaniline/FeMo6 nanoparticles on graphene not only provided the pseudocapacitance but also weakened the aggregation between the graphene layers, resulting in a higher surface area compared with pure graphene. In addition, the AC//PPG-15 asymmetric supercapacitor device showed a high energy density of 24.65[Formula: see text]W h kg[Formula: see text] at a low power density of 326.25[Formula: see text]W kg[Formula: see text] and good cycling stability (94.82% capacitance retention after 5000 cycles). Hence, the as-prepared PPG hybrid materials in this work possess tremendous potential as electrodes for high-performance supercapacitors.


2017 ◽  
Vol 20 (4) ◽  
pp. 197-204
Author(s):  
Weiliang Chen ◽  
Shuhua Pang ◽  
Zheng Liu ◽  
Zhewei Yang ◽  
Xin Fan ◽  
...  

Polypyrrole with hierarchical dendritic structures assembled with cauliflower-like structure of nanospheres, was synthesized by chemical oxidation polymerization. The structure of polyryrrole was characterized by Fourier transform infrared spectrometer and scanning electron microscopy. The electrochemical performance was performed on CHI660 electrochemical workstation. The results show that oxalic acid has a significant effect on morphology of PPy products. The hierarchical dendritic PPyOA(3) electrodes possess a large specific capacitance as high as 744 F/g at a current density of 0.2 A/g and could achieve a higher specific capacitance of 362 F/g even at a current density of 5.0 A/g. Moreover, the dendritic PPy products produce a large surface area on the electrode through the formation of the channel structure with their assembled cauliflower-like morphology, which facilitates the charge/electron transfer relative to the spherical PPy electrode. The spherical dendritic PPyOA(3) electrode has 58% retention of initial specific capacitance after 260 cycles. The as-prepared dendritic polypyrrole with high performance is a promsing electrode material for supercapacitor.


2021 ◽  
Vol 236 ◽  
pp. 01016
Author(s):  
Congcong Huang ◽  
Yunhui Dong ◽  
Xingjun Dong

A facile route has been employed to synthesize a series of high performance activated carbons as the electrode material for supercapacitors. The structure of the carbons are characterized by N2 adsorption/desorption and FTIR spectroscopy. The electrochemical performances of the carbons as an electrode material were evaluated by cyclic voltammetry test and galvanostatic charge/discharge measurements. As a biomass derived carbon, KOH-1 exhibits high capacity, good rate capability and high energy density, indicating the promising application of hydrothermal combining with KOH activation method for biomass materials that used in supercapacitors


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1703
Author(s):  
Xiaomeng Yang ◽  
Xiaorui Zeng ◽  
Guihong Han ◽  
Dong Sui ◽  
Xiangyu Song ◽  
...  

The growing demand for high performance from supercapacitors has inspired the development of porous nanocomposites using renewable and naturally available materials. In this work, a formaldehyde-free phenolic resin using monosaccharide-based furfural was synthesized to act as the carbon precursor. One dimensional halloysite nanotube (HNT) with high porosity and excellent cation/anion exchange capacity was mixed with the phenol-furfural resin to fabricate carbonaceous nanocomposite HNT/C. Their structure and porosity were characterized. The effects of the halloysite nanotube amount and carbonization temperature on the electrochemical properties of HNT/C were explored. HNT/C exhibited rich porosity, involving a large specific surface area 253 m2·g−1 with a total pore volume of 0.27 cm3·g−1. The electrochemical performance of HNT/C was characterized in the three-electrode system and showed enhanced specific capacitance of 146 F·g−1 at 0.2 A g−1 (68 F·g−1 for pristine carbon) in electrolyte (6 mol·L−1 KOH) and a good rate capability of 62% at 3 A g−1. It also displayed excellent cycle performance with capacitance retention of 98.5% after 500 cycles. The symmetric supercapacitors with HNT/C-1:1.5-800 electrodes were fabricated, exhibiting a high energy density of 20.28 Wh·Kg−1 at a power density of 100 W·Kg−1 in 1 M Na2SO4 electrolyte. The present work provides a feasible method for preparing composite electrode materials with a porous structure from renewable phenol-furfural resin and HNT. The excellent supercapacitance highlights the potential applications of HNT/C in energy storage.


2019 ◽  
Vol 9 (4) ◽  
pp. 243-253
Author(s):  
Yong Zhang ◽  
Yi Ru ◽  
Hai-Li Gao ◽  
Shi-Wen Wang ◽  
Ji Yan ◽  
...  

In this work, NiCo2O4 nanoparticles with enhanced supercapacitive performance have been successfully synthesized via a facile sol-gel method and subsequent calcination in air. The morphology and composition of as-prepared samples were characterized using scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray dif­fraction (XRD), and Raman spectroscopy (Raman). The electrochemical per­formances of NiCo2O4 nanoparticles as supercapacitor electrode materials were evalu­ated by cyclic voltammetry (CV), galvanostatic charge/discharge (GCD) tests in 3 mol L-1 KOH aqueous solution. The results show that as-prepared NiCo2O4 nanoparticles have diameters of about 20-30 nm with uniform distribution. There are some interspaces between nanoparticles observed, which could increase the effective contact area with the electrolyte and provide fast path for the insertion and extraction of electrolyte ions. The electrochemical tests show that the prepared NiCo2O4 nanoparticles for supercapacitors exhibit excellent electrochemical performance with high specific capacitance and good cycle stability. The specific capacitance of NiCo2O4 electrode has been found as high as 1080, 800, 651, and 574 F g-1 at current densities of 1, 4, 7, and 10 A g-1, respectively. Notably, the capacitance retention rate (compared with 1 A g-1) is up to 74.1 %, 60.3 %, and 53.1 % at current densities of 4, 7, and 10 A g-1, respectively. After 100 cycles, higher capacitance retention rate is also achieved. Therefore, the results indicate that NiCo2O4 material is the potential electrode material for supercapacitors.


Sign in / Sign up

Export Citation Format

Share Document