scholarly journals Effect of Short Fiber Reinforcements on Fracture Performance of Cement-Based Materials: A Systematic Review Approach

Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1745
Author(s):  
Waqas Ahmad ◽  
Mehran Khan ◽  
Piotr Smarzewski

Fracture characteristics were used to effectively evaluate the performance of fiber-reinforced cementitious composites. The fracture parameters provided the basis for crack stability analysis, service performance, safety evaluation, and protection. Much research has been carried out in the proposed study field over the previous two decades. Therefore, it was required to analyze the research trend from the available bibliometric data. In this study, the scientometric analysis and science mapping techniques were performed along with a comprehensive discussion to identify the relevant publication field, highly used keywords, most active authors, most cited articles, and regions with largest impact on the field of fracture properties of cement-based materials (CBMs). Furthermore, the characteristic of various fibers such as steel, polymeric, inorganic, and carbon fibers are discussed, and the factors affecting the fracture properties of fiber-reinforced CBMs (FRCBMs) are reviewed. In addition, future gaps are identified. The graphical representation based on the scientometric review could be helpful for research scholars from different countries in developing research cooperation, creating joint ventures, and exchanging innovative technologies and ideas.

Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2593
Author(s):  
Dan Wu ◽  
Yanan Li ◽  
Hui Kong ◽  
Tingting Meng ◽  
Zenghui Sun ◽  
...  

An extended drought period with low precipitation can result in low water availability and issues for humans, animals, and plants. Drought forecasting is critical for water resource development and management as it helps to reduce negative consequences. In this study, scientometric analysis and manual comprehensive analysis on drought modelling and forecasting are used. A scientometric analysis is used to determine the current research trend using bibliometric data and to identify relevant publication field sources with the most publications, the most frequently used keywords, the most cited articles and authors, and the countries that have made the greatest contributions to the field of water resources. This paper also tries to provide an overview of water issues, such as drought classification, drought indices, historical droughts, and their impact on Asian countries such as China, Pakistan, India, and Iran. There have been many models established for this purpose and choosing the appropriate model for study is a long procedure for researchers. An appropriate, comprehensive, pedagogical study of model ideas and historical implementations would benefit researchers by helping them to avoid overlooking viable model options, thus reducing their time spent on the topic. As a result, the goal of this paper is to review drought-forecasting approaches and recommend the best models for the Asian region. The models are divided into four categories based on their mechanisms: Regression analysis, stochastic modelling, machine learning, and dynamic modelling. The basic concepts of each approach in terms of the model’s historical use, benefits, and limitations are explained. Finally, prospects for future drought research in Asia are discussed as well as potential modelling techniques.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 710
Author(s):  
Di Qin ◽  
Yidan Hu ◽  
Xuemei Li

The construction industry has a significant environmental impact, contributing considerably to CO2 emissions, natural resource depletion, and energy consumption. The construction industry is currently trending towards using alternative construction materials in place of natural materials and cement, thereby reducing the environmental impact and promoting sustainability. Two approaches have been used in this review: scientometric analysis and a comprehensive manual review on the waste glass (WG) utilization in cement-based materials (CBMs) as a sustainable approach. Scientometric analysis is conducted to find out the current research trend from available bibliometric data and to identify the relevant publication fields, sources with the most publications, the most frequently used keywords, the most cited articles and authors, and the countries that have made the most significant contribution to the field of WG utilization in CBMs. The effect of WG on the mechanical properties of CBMs was found to be inconsistent in the literature. The inconsistent effects of WG impede its acceptance in the construction sector. This study intends to shed light on the arguments and tries to explain the opposing perspectives. This article summarizes the findings of various research groups and recommends new viewpoints based on the assessment of fundamental processes. The effect of utilizing WG on fresh and hardened properties of CBMs, including workability, compressive strength, split-tensile strength, and flexural strength, are reviewed. Furthermore, the microstructure and durability of composites containing WG are investigated. Different limitations associated with WG use in CBMs and their possible solution are reported. This study will assist researchers in identifying gaps in the present research. Additionally, the scientometric review will enable researchers from diverse regions to exchange novel ideas and technologies, collaborate on research, and form joint ventures.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1278
Author(s):  
Anna Turysheva ◽  
Irina Voytyuk ◽  
Daniel Guerra

This paper presents a computational tool for estimating energy generated by low-power photovoltaic systems based on the specific conditions of the study region since the characteristic energy equation can be obtained considering the main climatological factors affecting these systems in terms of the symmetry or skewness of the random distribution of the generated energy. Furthermore, this paper is aimed at determining any correlation that exists between meteorological variables with respect to the energy generated by 5-kW solar systems in the specific climatic conditions of the Republic of Cuba. The paper also presents the results of the influence of each climate factor on the distribution symmetry of the generated energy of the solar system. Studying symmetry in statistical models is important because they allow us to establish the degree of symmetry (or skewness), which is the probability distribution of a random variable, without having to make a graphical representation of it. Statistical skewness reports the degree to which observations are distributed evenly and proportionally above and below the center (highest) point of the distribution. In the case when the mentioned distribution is balanced, it is called symmetric.


Author(s):  
Natalie Rauter

AbstractIn this study a modeling approach for short fiber-reinforced composites is presented which allows one to consider information from the microstructure of the compound while modeling on the component level. The proposed technique is based on the determination of correlation functions by the moving window method. Using these correlation functions random fields are generated by the Karhunen–Loève expansion. Linear elastic numerical simulations are conducted on the mesoscale and component level based on the probabilistic characteristics of the microstructure derived from a two-dimensional micrograph. The experimental validation by nanoindentation on the mesoscale shows good conformity with the numerical simulations. For the numerical modeling on the component level the comparison of experimentally obtained Young’s modulus by tensile tests with numerical simulations indicate that the presented approach requires three-dimensional information of the probabilistic characteristics of the microstructure. Using this information not only the overall material properties are approximated sufficiently, but also the local distribution of the material properties shows the same trend as the results of conducted tensile tests.


2021 ◽  
Vol 33 (5) ◽  
pp. 053107
Author(s):  
Susanne K. Kugler ◽  
Abrahán Bechara ◽  
Hector Perez ◽  
Camilo Cruz ◽  
Armin Kech ◽  
...  

1999 ◽  
Vol 66 (3) ◽  
pp. 709-713 ◽  
Author(s):  
R. S. Feltman ◽  
M. H. Santare

A model is presented to analyze the effect of fiber fracture on the anisotropic elastic properties of short-fiber reinforced composite materials. The effective moduli of the material are modeled using a self-consistent scheme which includes the calculated energy dissipated through the opening of a crack in an arbitrarily oriented elliptical inclusion. The model is an extension of previous works which have modeled isotropic properties of short-fiber reinforced composites with fiber breakage and anisotropic properties of monolithic materials with microcracks. Two-dimensional planar composite systems are considered. The model allows for the calculation of moduli under varying degrees of fiber alignment and damage orientation. In the results, both aligned fiber systems and randomly oriented fiber systems with damage-induced anisotropy are examined.


Sign in / Sign up

Export Citation Format

Share Document