scholarly journals Study on the Dynamic Recrystallization Behavior of 47Zr-45Ti-5Al-3V Alloy by CA–FE Simulation

Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2562
Author(s):  
Wenwei Zhang ◽  
Qiuyue Yang ◽  
Yuanbiao Tan ◽  
Ya Yang ◽  
Song Xiang ◽  
...  

The dynamic recrystallization (DRX) behavior of 47Zr-45Ti-5Al-3V alloy was studied by using the experiment and numerical simulation method based on DEFORM-3D software and cellular automata (CA) over a range of deformation temperatures (850 to 1050 °C) and strain rates (10−3 to 100 s−1). The results reveal that the DRX behavior of 47Zr-45Ti-5Al-3V alloy strongly depends on hot-working parameters. With rising deformation temperature (T) and decreasing strain rate (ε˙), the grain size (dDRX) and volume fraction (XDRX) of DRX dramatically boost. The kinetics models of the dDRX and XDRX of DRX grains were established. According to the developed kinetics models for DRX of 47Zr-45Ti-5Al-3V alloy, the distributions of the dDRX and XDRX for DRX grains were predicted by DEFORM-3D. DRX microstructure evolution is simulated by CA. The correlation of the kinetics model is verified by comparing the dDRX and XDRX between the experimental and finite element simulation (FEM) results. The nucleation and growth of dynamic recrystallization grains in 47Zr-45Ti-5Al-3V alloy during hot-working can be simulated accurately by CA simulation, comparing with FEM.

2013 ◽  
Vol 275-277 ◽  
pp. 1833-1837
Author(s):  
Ke Lu Wang ◽  
Shi Qiang Lu ◽  
Xin Li ◽  
Xian Juan Dong

A Johnson-Mehl-Avrami-Kolmogorov (JMAK)-model was established for dynamic recrystallization in hot deformation process of 52100 steel. The effects of hot deformation temperature, true strain and strain rate on the microstructural evolution of the steel were physically studied by using Gleeble-1500 thermo-mechanical simulator and the experimental results were used for validation of the JMAK-model. Through simulation and experiment, it is found that the predicted results of DRX volume fraction, DRX grain size and average grain size are in good agreement with the experimental ones.


2017 ◽  
Vol 36 (10) ◽  
pp. 1001-1010 ◽  
Author(s):  
S. S. Zhou ◽  
X. Q. Liu ◽  
Z. L. Liu ◽  
Z. G. Hou ◽  
Q. C. Tian

AbstractDynamic recrystallization (DRX) behavior of a vanadium microalloyed steel pipe was systematically investigated at temperatures range of 850–1,200 °C and a strain rate of 5 s−1 on a Gleeble-3800 thermo-simulation machine. Constitutive equation was obtained by characteristic points of DRX which derived from the strain hardening rate and stress curves. DRX kinetics model was established for determining the recrystallization volume fraction (X). Effect of dynamic precipitation of V(C, N) imposed on DRX at temperatures from 850–1,000 °C was analyzed. Results show that true stress-strain curves exhibited no clearly defined stress peaks with typical dynamic recovery behavior. X increased from 43.9 % to 100 % with increasing deformation temperature, which was in reasonable agreement with the observation of microstructure. Moreover, the calculation pinning force of V(C, N) precipitates was weaker than the recrystallization driving force, revealing that V(C, N) precipitates could effectively retard rather than prevent the progress of DRX.


2018 ◽  
Vol 37 (2) ◽  
pp. 181-192 ◽  
Author(s):  
Xuemei Yang ◽  
Hongzhen Guo ◽  
Zekun Yao ◽  
Shichong Yuan

AbstractThe high-temperature plastic deformation and dynamic recrystallization behavior of BT25y alloy were investigated within the deformation temperatures of 1,213–1,293 K and strain rates of 0.001–1.0 s–1 on a Gleeble-1500 thermo-mechanical simulator. Results showed that the dynamic recrystallization (DRX) mechanism played an important role in the hot deformation of BT25y alloy. Based on the regression analysis of the true stress–strain data, the stress exponent and deformation activation energy of BT25y alloy were calculated to be 3.4912 and 288.0435 kJ/mol, respectively. The θ-σ and dθ/dσ–σ curves were plotted to further obtain the critical stress and critical strain for the occurrence of DRX. Based on the analysis results, the DRX kinetic model was established. The model was validated by the comparison between predicted and experimental volume fraction of DRX. As the DRX evolution was sensitive to deformation temperature and strain rate, quantities of dynamically recrystallized grains appeared at higher temperatures and lower strain rates.


2016 ◽  
Vol 849 ◽  
pp. 181-185 ◽  
Author(s):  
Shi Lun Yu ◽  
Yong Hao Gao ◽  
Chu Ming Liu ◽  
Hong Chao Xiao

Dynamic recrystallization behavior of Mg-8.0Gd-3.0Y-0.5Zr (wt.%) alloy and the critical conditions corresponding to the onset of dynamic recrystallization were investigated using uniaxial compression tests conducted at temperatures ranging from 350 °C to 500 °C and strain rates ranging from 0.001 s-1 to 1 s-1. Results show that increasing temperature and/or decreasing strain rate can enhance the process of dynamic recrystallization of Mg-8.0Gd-3.0Y-0.5Zr alloy and lower the peak stress and corresponding strain. However, decreasing temperature and/or increasing strain rate can promote the occurrence of twin dynamic recrystallization (TDRX) within the original grains at the cost of reducing the total volume fraction of dynamically recrystallized grains in the microstructure. Besides, the critical stress and strain corresponding to the onset of dynamic recrystallization of Mg-8.0Gd-3.0Y-0.5Zr at 400 °C and 0.1 s-1 are 173MPa and 0.13, respectively.


Author(s):  
Ju Li ◽  
Yongtang Li ◽  
Huiping Qi ◽  
Huiqin Chen

It is the basis for the new casting-rolling compound forming technology to investigate the rules of rolling deformation and microstructure evolution of casting ring blank. The initial rolling temperature of casting ring blank is one of the key factors influencing deformation and dynamic recrystallization behavior. In this paper, dynamic recrystallization models of as-cast 42CrMo steel were derived from thermo-simulation experimental results. Then, under DEFORM-3D software environment, deformation and dynamic recrystallization of 42CrMo casting ring blank were simulated at different initial rolling temperature by coupled thermo-mechanical finite element method. According to the simulation results, the effects of initial rolling temperature on strain fields distribution and dynamic recrystallization of 42CrMo casting ring blank were discussed. The results show that: (1) increased initial rolling temperature makes plastic deformation expand from ring’s outer and inner-layer to middle and distribute ever more evenly; (2) increased initial rolling temperature can lead to increased dynamic recrystallization fraction, but grain size of ring’s inner and outer-layer becomes smaller and smaller, while that of mid-layer coarser and coarser.


Author(s):  
K.S. Sekar ◽  
K. Sudhagar ◽  
S.N. Murugesan

The capabilities of presses are sometimes limited due to larger cutting force requirement for some sheet metal operations. Reducing the tonnage requirements for such operations will sometimes make the presses capable of doing such operations. FEM simulation can be a reliable tool in predicting the amount of tonnage required for the metal stamping operation. An attempt is taken in this study to analyse the behaviour of the hole piercing operation in an automobile chain part using DEFORM 3D software. The main focus is on the prediction of tonnage requirement with different shear methods on the piercing. Simulations were conducted with flat, single sheared, double sheared, reverse double sheared, convex sheared and concave sheared punches and analyzed for variations in the press load. The phenomena of piercing are also observed through the simulation based on AISI 1060 steel component used for automobile chain as inner plate. Simulation results showed that the shear angles provided on piercing punches will reduce the punch load significantly.


Author(s):  
Amrit Sagar ◽  
Christopher Nehme ◽  
Anil Saigal ◽  
Thomas P. James

Abstract Microscale holes were punched at cryogenic conditions in polycaprolactone (PCL) membranes to create synthetic three-dimensional (3D) tissue scaffolds through multilayer stacking of two-dimensional (2D) porous membranes. Punching forces were experimentally measured, and finite element modeling of the punching process was validated by comparing punching force results. Holes of nominal diameter of 200 μm were punched in PCL films of two different thicknesses: 40 μm and 70 μm. Die clearances used for holes in 40 μm thick films were 15.0%, 30.0%, and 45.0%. Die clearances used for holes in 70 μm films were 8.6%, 17.1%, and 25.7%. All holes were punched while the PCL film was in thermal equilibrium with a bath of boiling liquid nitrogen. Punching forces were analyzed to study the effect of die clearance and film thickness. A 3D finite element simulation of the punching process was done using deform 3d software. Cryogenic material properties of PCL used in the simulation were determined experimentally. It was concluded that finite element simulation for the cryogenic micropunching process can be used to predict peak punching forces with reasonable accuracy, which is a key factor to be considered while designing the punching dies. The finite element simulations did not predict an optimal die clearance to minimize peak punching force. However, the measured peak punching forces for 70 μm thick film seem to favor the smallest die clearance to minimize peak punching force.


Sign in / Sign up

Export Citation Format

Share Document