scholarly journals A Self-Bleaching Electrochromic Mirror Based on Metal Organic Frameworks

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2771
Author(s):  
Kun Wang ◽  
Kai Tao ◽  
Ran Jiang ◽  
Hongliang Zhang ◽  
Lingyan Liang ◽  
...  

Metal-organic frameworks (MOFs) are considered to be the most promising positive anode materials to store charge for electrochromic devices. Nevertheless, a detailed mechanism of the electrochemical and ions storage process has not yet been revealed. Herein, the electrochemical mechanism of the highly porous ZIF-67 films and the electrochromic performance of electrochromic mirrors constructed from ZIF-67 and WO3 electrodes were investigated. The mechanism of the charge storage was revealed in the kinetic analysis of the Li-ion behavior based on the cyclic voltammetry curves and electrochemical impedance spectra. Impressively, the electrochromic mirrors with the self-bleaching effect and self-discharge behavior showed a unique electrochromic performance, such as a high coloration efficiency of 16.47 cm2 C−1 and a maximum reflectance modulation of 30.10% at 650 nm. This work provides a fundamental understanding of MOFs for applications in electrochromic devices and can also promote the exploration of novel electrode materials for high-performance reflective electrochromic devices.

2017 ◽  
Vol 5 (3) ◽  
pp. 1094-1102 ◽  
Author(s):  
Yang Jiao ◽  
Jian Pei ◽  
Dahong Chen ◽  
Chunshuang Yan ◽  
Yongyuan Hu ◽  
...  

Metal–organic frameworks (MOFs) have obtained increasing attention as a kind of novel electrode material for energy storage devices.


2014 ◽  
Vol 2 (31) ◽  
pp. 12194-12200 ◽  
Author(s):  
Jie Shao ◽  
Zhongming Wan ◽  
Hongmei Liu ◽  
Huiyuan Zheng ◽  
Tian Gao ◽  
...  

Co3O4 hollow dodecahedrons with controllable interiors are prepared through direct pyrolysis of ZIF-67 and exhibit high performance for Li-ion storage.


2021 ◽  
Author(s):  
Qiong Bi ◽  
Qingxiang Ma ◽  
Kai Tao ◽  
Lei Han

Two-dimensional (2D) metal-organic frameworks (MOFs) with large surface area, ordered pores and ultrathin thickness have recently emerged as ideal electrode materials for supercapacitors (SCs). However, their straightforward applications are restricted...


Author(s):  
Yanhong Liu ◽  
Jiahong Liu ◽  
Yijun Cao ◽  
Wei Shang ◽  
Ning Peng ◽  
...  

Abstract Metal-organic frameworks (MOFs) due to their porosity and well-defined structures are considered to be very promising electrode materials for the construction of high-performance supercapacitor. In this paper, manganese-based metal organic frameworks (Mn-MOF) were prepared on the surface of carbon cloth (CC) by hydrothermal method. The morphology and structure of the electrode material were characterized by SEM, XRD, FT-IR, and XPS. Its electrochemical studies show that the Mn-MOF electrode materials exhibit low charge transfer resistance, the excellent specific capacitance of 433.5 mF·cm−2 in 1.0 M Na2SO4 aqueous solution at the current density of 0.8 mA·cm−2. It is noteworthy that the flexible electrode has excellent cycle stability and 105% capacitance retention even after 5000 cycles at a current density of 5 mA·cm−2. The high electrochemical performance of Mn-MOF/CC flexible electrode materials can be attributed to its three-dimensional porous structure.


2017 ◽  
Vol 199 ◽  
pp. 176-179 ◽  
Author(s):  
Lina Jin ◽  
Xiaoshuang Zhao ◽  
Xinye Qian ◽  
Shanwen Wang ◽  
Xiangqian Shen ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5986
Author(s):  
Tao Chen ◽  
Hao Guo ◽  
Leiming Yu ◽  
Tao Sun ◽  
Anran Chen ◽  
...  

Si/PEDOT: PSS solar cell is an optional photovoltaic device owing to its promising high photovoltaic conversion efficiency (PCE) and economic manufacture process. In this work, dopamine@graphene was firstly introduced between the silicon substrate and PEDOT:PSS film for Si/PEDOT: PSS solar cell. The dopamine@graphene was proved to be effective in improving the PCE, and the influence of mechanical properties of dopamine@graphene on solar cell performance was revealed. When dopamine@graphene was incorporated into the cell preparation, the antireflection ability of the cell was enhanced within the wavelength range of 300~450 and 650~1100 nm. The enhanced antireflection ability would benefit amount of the photon-generated carriers. The electrochemical impedance spectra test revealed that the introduction of dopamine@graphene could facilitate the separation of carriers and improve the junction quality. Thus, the short-circuit current density and fill factor were both promoted, which led to the improved PCE. Meanwhile, the influence of graphene concentration on device performances was also investigated. The photovoltaic conversion efficiency would be promoted from 11.06% to 13.15% when dopamine@graphene solution with concentration 1.5 mg/mL was applied. The achievements of this study showed that the dopamine@graphene composites could be an useful materials for high-performance Si/PEDOT:PSS solar cells.


Sign in / Sign up

Export Citation Format

Share Document