scholarly journals Antireflection Improvement and Junction Quality Optimization of Si/PEDOT:PSS Solar Cell with the Introduction of Dopamine@Graphene

Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5986
Author(s):  
Tao Chen ◽  
Hao Guo ◽  
Leiming Yu ◽  
Tao Sun ◽  
Anran Chen ◽  
...  

Si/PEDOT: PSS solar cell is an optional photovoltaic device owing to its promising high photovoltaic conversion efficiency (PCE) and economic manufacture process. In this work, dopamine@graphene was firstly introduced between the silicon substrate and PEDOT:PSS film for Si/PEDOT: PSS solar cell. The dopamine@graphene was proved to be effective in improving the PCE, and the influence of mechanical properties of dopamine@graphene on solar cell performance was revealed. When dopamine@graphene was incorporated into the cell preparation, the antireflection ability of the cell was enhanced within the wavelength range of 300~450 and 650~1100 nm. The enhanced antireflection ability would benefit amount of the photon-generated carriers. The electrochemical impedance spectra test revealed that the introduction of dopamine@graphene could facilitate the separation of carriers and improve the junction quality. Thus, the short-circuit current density and fill factor were both promoted, which led to the improved PCE. Meanwhile, the influence of graphene concentration on device performances was also investigated. The photovoltaic conversion efficiency would be promoted from 11.06% to 13.15% when dopamine@graphene solution with concentration 1.5 mg/mL was applied. The achievements of this study showed that the dopamine@graphene composites could be an useful materials for high-performance Si/PEDOT:PSS solar cells.

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jung-Chuan Chou ◽  
Shen-Chang Lin ◽  
Yi-Hung Liao ◽  
Jui-En Hu ◽  
Shen-Wei Chuang ◽  
...  

Titanium dioxide (TiO2) film was deposited on fluorine-doped tin oxide (FTO) glass substrate by electrophoretic deposition method (EPD). TiO2films were prepared with different I2dosages, electric field intensities and deposition time (D.T.), electrophotic deposition times. By different I2dosages, electric field intensities, deposition time, electrophotic deposition times fabricated TiO2films and compared photoelectric characteristics of TiO2films to find optimal parameters which were the highest photovoltaic conversion efficiency. And use electrochemical impedance spectroscopy (EIS) to measure the Nyquist plots under different conditions and analyze the impendence of dye-sensitized solar cells at the internal heterojunction. According to the experimental results, the I2dosage was 0.025 g which obtained the optimal characteristic parameters. Thickness of TiO2film was 10.6 μm, the open-circuit voltage (Voc) was 0.77 V, the short-circuit current density (Jsc) was 7.20 mA/cm2, the fill factor (F.F.) was 53.41%, and photovoltaic conversion efficiency (η) was 2.96%.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sangho Kim ◽  
Thanh Thuy Trinh ◽  
Jinjoo Park ◽  
Duy Phong Pham ◽  
Sunhwa Lee ◽  
...  

AbstractWe developed and designed a bifacial four-terminal perovskite (PVK)/crystalline silicon (c-Si) heterojunction (HJ) tandem solar cell configuration albedo reflection in which the c-Si HJ bottom sub-cell absorbs the solar spectrum from both the front and rear sides (reflected light from the background such as green grass, white sand, red brick, roofing shingle, snow, etc.). Using the albedo reflection and the subsequent short-circuit current density, the conversion efficiency of the PVK-filtered c-Si HJ bottom sub-cell was improved regardless of the PVK top sub-cell properties. This approach achieved a conversion efficiency exceeding 30%, which is higher than those of both the top and bottom sub-cells. Notably, this efficiency is also greater than the Schockley–Quiesser limit of the c-Si solar cell (approximately 29.43%). The proposed approach has the potential to lower industrial solar cell production costs in the near future.


2021 ◽  
Vol 877 (1) ◽  
pp. 012001
Author(s):  
Marwah S Mahmood ◽  
N K Hassan

Abstract Perovskite solar cells attract the attention because of their unique properties in photovoltaic cells. Numerical simulation to the structure of Perovskite on p-CZTS/p-CH3NH3PbCI3/p-CZTS absorber layers is performed by using a program solar cell capacitance simulator (SCAPS-1D), with changing absorber layer thickness. The effect of thickness p-CZTS/p-CH3NH3PbCI3/p-CZTS, layers at (3.2μm, 1.8 μm, 1.1 μm) respectively are studied. The obtained results are short circuit current density (Jsc ), open circuit voltage (V oc), fill factor (F. F) and power conversion efficiency (PCE) equal to (28 mA/cm2, 0.83 v, 60.58 % and 14.25 %) respectively at 1.1 μm thickness. Our findings revealed that the dependence of current - voltage characteristics on the thickness of the absorbing layers, an increase in the amount of short circuit current density with an increase in the thickness of the absorption layers and thus led to an increase in the conversion efficiency and improvement of the cell by increasing the thickness of the absorption layers.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4659
Author(s):  
Tao Chen ◽  
Hao Guo ◽  
Leiming Yu ◽  
Tao Sun ◽  
Yu Yang

Si/PEDOT: PSS solar cell is an important alternative for photovoltaic device due to its anticipated high theoretical efficiency and simple manufacturing process. In this study, processing silicon substrate with diluted NaOH aqueous solution was found to be an effective method for improving device performance, one that notably improves junction quality and light trapping ability. When immersed in diluted NaOH aqueous solution, the junction quality was improved according to the enlarged fill factor, reduced series resistance, and enhanced minor carrier lifetime. The diluted NaOH aqueous solution immersion etched the silicon surface and helped with the enhancement of light trapping ability, further improving the short-circuit current density. Although diluted NaOH aqueous solution immersion for bare silicon could improve the performance of devices, proper immersion time was needed. The influence of immersion time on device performances was investigated. The photovoltaic conversion efficiency easily increased from 10.01% to 12.05% when silicon substrate was immersed in diluted NaOH aqueous for 15 min. This study contributes to providing efficient and convenient methods for preparing high performance Si/PEDOT: PSS solar cells.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2690
Author(s):  
Dariusz Augustowski ◽  
Paweł Kwaśnicki ◽  
Justyna Dziedzic ◽  
Jakub Rysz

The main efficiency loss is caused by an intensive recombination process at the interface of fluorine-doped tin oxide (FTO) and electrolyte in dye-sensitized solar cells. Electrons from the photoanode can be injected back to the redox electrolyte and, thus, can reduce the short circuit current. To avoid this, the effect of the electron blocking layer (EBL) was studied. An additional thin film of magnetron sputtered TiO2 was deposited directly onto the FTO glass. The obtained EBL was characterized by atomic force microscopy, scanning electron microscopy, optical profilometry, energy dispersive spectroscopy, Raman spectroscopy and UV-VIS-NIR spectrophotometry. The results of the current–voltage characteristics showed that both the short circuit current (Isc) and fill factor (FF) increased. Compared to traditional dye-sensitized solar cell (DSSC) architecture, the power conversion efficiency (η) increased from 4.67% to 6.07% for samples with a 7 × 7 mm2 active area and from 2.62% to 3.06% for those with an area of 7 × 80 mm2.


2015 ◽  
Vol 1738 ◽  
Author(s):  
Liyuan Zhang ◽  
Sreejith Karthikeyan ◽  
Mandip J. Sibakoti ◽  
Stephen A. Campbell

ABSTRACTWe investigate the synthesis of kesterite Cu2ZnSnS4 (CZTS) thin films using thermal evaporation from copper, zinc and tin pellets and post-annealing in a sulfur atmosphere. The effects of chemical composition were studied both on the absorber layer properties and on the final solar cell performance. It is confirmed that CZTS thin film chemical composition affects the carrier concentration profile, which then influences the solar cell properties. Solar cells using a CZTS thin film with composition ratio Cu/(Zn+Sn) = 0.87, and Zn/Sn = 1.24 exhibited an open-circuit voltage of 483 mV, a short-circuit current of 14.54 mA/cm2, a fill factor of 37.66 % and a conversion efficiency of 2.64 %. Only a small deviation from the optimal chemical composition can drop device performance to a lower level, which confirms that the CZTS solar cells with high conversion efficiency existed in a relatively narrow composition region.


2018 ◽  
Vol 32 (02) ◽  
pp. 1850014 ◽  
Author(s):  
G. S. Sahoo ◽  
G. P. Mishra

Recent trends of photovoltaics account for the conversion efficiency limit making them more cost effective. To achieve this we have to leave the golden era of silicon cell and make a path towards III–V compound semiconductor groups to take advantages like bandgap engineering by alloying these compounds. In this work we have used a low bandgap GaSb material and designed a single junction (SJ) cell with a conversion efficiency of 32.98%. SILVACO ATLAS TCAD simulator has been used to simulate the proposed model using both Ray Tracing and Transfer Matrix Method (under 1 sun and 1000 sun of AM1.5G spectrum). A detailed analyses of photogeneration rate, spectral response, potential developed, external quantum efficiency (EQE), internal quantum efficiency (IQE), short-circuit current density (J[Formula: see text]), open-circuit voltage (V[Formula: see text]), fill factor (FF) and conversion efficiency ([Formula: see text]) are discussed. The obtained results are compared with previously reported SJ solar cell reports.


2005 ◽  
Vol 12 (01) ◽  
pp. 19-25 ◽  
Author(s):  
M. RUSOP ◽  
M. ADACHI ◽  
T. SOGA ◽  
T. JIMBO

Phosphorus-doped amorphous carbon (n-C:P) films were grown by r. f.-power-assisted plasma-enhanced chemical vapor deposition at room temperature using a novel solid red phosphorus target. The influence of phosphorus doping on material properties of n-C:P based on the results of simultaneous characterization are reported. Moreover, the solar cell properties such as series resistance, short circuit current density, open circuit current voltage, fill factor and conversion efficiency along with the spectral response are reported for the fabricated carbon-based n-C:P/p-Si heterojunction solar cell that was measured by standard measurement technique. The cells performances have been given in the dark I–V rectifying curve and I–V working curve under illumination when exposed to AM 1.5 illumination condition (100 mW/cm 2, 25°C). The maximum of open-circuit voltage (V oc ) and short-circuit current density (J sc ) for the cells are observed to be approximately 236 V and 7.34, mAcm 2 respectively for the n-C:P/p-Si cell grown at lower r. f. power of 100 W. The highest energy conversion efficiency (η) and fill factor (FF) were found to be approximately 0.84% and 49%, respectively. We have observed that the rectifying nature of the heterojunction structures is due to the nature of n-C:P films.


In this paper, a novel photonic crystal (PhC) polycrystalline CdTe/Silicon solar cells are theoretically explained that increase their short circuit current density and conversion efficiency. The proposed structure consist of a polycrystalline CdTe/Silicon solar cell that a photonic crystal is formed in the upper cell. The optical confinement is achieved by means of photonic crystal that can adjust the propagation and distribution of photons in solar cells. For validation of modeling, the electrical properties of the experimentally-fabricated based CdS/CdTe solar cell is modeled and compared that there is good agreement between the modeling results and experimental results from the litterature. The results of this study showed that the solar cell efficiency is increased by about 25% compared to the reference cell by using photonic crystal. The open circuit voltage, short circuit current density, fill factor and conversion efficiency of proposed solar cell structure are 1.01 V, 40.7 mA/cm2, 0.95 and 27% under global AM 1.5 conditions, respectively. Furthermore, the influence of carrier lifetime variation in the absorber layer of proposed solar cell on the electrical characteristics was theoretically considered and investigated.


2018 ◽  
Vol 43 ◽  
pp. 01006 ◽  
Author(s):  
Ferdiansjah ◽  
Faridah ◽  
Kelvian Tirtakusuma Mularso

Back Surface Field (BSF) has been used as one of means to enhance solar cell performance by reducing surface recombination velocity (SRV). One of methods to produce BSF is by introducing highly doped layer on rear surface of the wafer. Depending on the type of the dopant in wafer, the BSF layer could be either p+ or n+. This research aims to compare the performance of BSF layer both in p-type and n-type wafer in order to understand the effect of BSF on both wafer types. Monociystalline silicon wafer with thickness of 300 μm. area of 1 cm2, bulk doping level NB = 1.5×1016/cm3 both for p-type wafer and n-type wafer are used. Both wafer then converted into solar cell by adding emitter layer with concentration NE =7.5×1018/cm3 both for p-type wafer and n-type wafer. Doping profile that is used for emitter layer is following complementary error function (erfc) distribution profile. BSF concentration is varied from 1×1017/cm3 to 1×1020/cm3 for each of the cell. Solar cell performance is tested under standard condition, with AM1.5G spectrum at 1000 W/m2. Its output is measured based on its open circuit voltage (Voc). short circuit current density (JSC), efficiency (η). and fill factor (FF). The result shows that the value of VOC is relatively constant along the range of BSF concentration, which is 0.694 V – 0.702 V. The same pattern is also observed in FF value which is between 0.828 – 0.831. On the other hand, value of JSC and efficiency will drop against the increase of BSF concentration. Highest JSC which is 0.033 A/cm2 and highest efficiency which is 18.6% is achieved when BSF concentration is slightly higher than bulk doping level. The best efficiency can be produced when BSF concentration is around 1×1017cm-3.. This result confirms that surface recombination velocity has been reduced due to the increase in cell’s short circuit current density and its efficiency. In general both p-type and n-type wafer will produce higher efficiency when BSF is applied. However, the increase is larger in p-type wafer than in n-type wafer. Better performance for solar cell is achieved when BSF concentration is slightly higher that bulk doping level because at very high BSF concentration the cell’s efficiency will be decreased.


Sign in / Sign up

Export Citation Format

Share Document