scholarly journals Experimental Verification of Contact Acoustic Nonlinearity at Rough Contact Interfaces

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2988
Author(s):  
Youngbeom Kim ◽  
Sungho Choi ◽  
Kyung-Young Jhang ◽  
Taehyeon Kim

When a longitudinal wave passes through a contact interface, second harmonic components are generated due to contact acoustic nonlinearity (CAN). The magnitude of the generated second harmonic is related to the contact state of the interface, of which a model has been developed using linear and nonlinear interfacial stiffness. However, this model has not been sufficiently verified experimentally for the case where the interface has a rough surface. The present study verifies this model through experiments using rough interfaces. To do this, four sets of specimens with different interface roughness values (Ra = 0.179 to 4.524 μm) were tested; one set consists of two Al6061-T6 blocks facing each other. The second harmonic component of the transmitted signal was analyzed while pressing on both sides of the specimen set to change the contact state of the interface. The experimental results showed good agreement with the theoretical prediction on the rough interface. The magnitude of the second harmonic was maximized at a specific contact pressure. As the roughness of the contact surface increased, the second harmonic was maximized at a higher contact pressure. The location of this maximal point was consistent between experiments and theory. In this study, an FEM simulation was conducted in parallel and showed good agreement with the theoretical results. Thus, the developed FEM model allows parametric studies on various states of contact interfaces.

2004 ◽  
Vol 71 (4) ◽  
pp. 508-515 ◽  
Author(s):  
S. Biwa ◽  
S. Nakajima ◽  
N. Ohno

Nonlinear interaction between elastic wave and contact interface, known to result in the so-called contact acoustic nonlinearity, is examined in a one-dimensional theoretical framework. The present analysis is based on a nonlinear interface stiffness model where the stiffness property of the contact interface is described as a function of the nominal contact pressure. The transmission/reflection coefficients for a normally incident harmonic wave, and the amplitudes of second harmonics as well as DC components arising at the contact interface are derived in terms of the interface stiffness properties and other relevant acoustic parameters. Implications of power-law relations between the linear interface stiffness and the contact pressure are examined in detail regarding the linear and nonlinear acoustic responses of the contact interface. Also, a plausible range of the relevant power-law exponent is provided from considerations based on the rough-surface contact mechanics. The analysis clarifies the qualitative contact-pressure dependence of various nonlinearity parameters based on different definitions. A particular power law is identified from existing experimental data for aluminum-aluminum contact, for which some explicit nonlinear characteristics are demonstrated. The theoretical contact-pressure dependence of the second harmonic generation at the contact interface is found to be in qualitative agreement with previous measurements.


2002 ◽  
Vol 715 ◽  
Author(s):  
J. Krc ◽  
M. Zeman ◽  
O. Kluth ◽  
F. Smole ◽  
M. Topic

AbstractThe descriptive scattering parameters, haze and angular distribution functions of textured ZnO:Al transparent conductive oxides with different surface roughness are measured. An approach to determine the scattering parameters of all internal interfaces in p-i-n a-Si:H solar cells deposited on the glass/ZnO:Al substrates is presented. Using the determined scattering parameters as the input parameters of the optical model, a good agreement between the measured and simulated quantum efficiencies of the p-i-n a-Si:H solar cells with different interface roughness is achieved.


1995 ◽  
Vol 23 (1) ◽  
pp. 26-51 ◽  
Author(s):  
S. Kagami ◽  
T. Akasaka ◽  
H. Shiobara ◽  
A. Hasegawa

Abstract The contact deformation of a radial tire with a camber angle, has been an important problem closely related to the cornering characteristics of radial tires. The analysis of this problem has been considered to be so difficult mathematically in describing the asymmetric deformation of a radial tire contacting with the roadway, that few papers have been published. In this paper, we present an analytical approach to this problem by using a spring bedded ring model consisting of sidewall spring systems in the radial, the lateral, and the circumferential directions and a spring bed of the tread rubber, together with a ring strip of the composite belt. Analytical solutions for each belt deformation in the contact and the contact-free regions are connected by appropriate boundary conditions at both ends. Galerkin's method is used for solving the additional deflection function defined in the contact region. This function plays an important role in determining the contact pressure distribution. Numerical calculations and experiments are conducted for a radial tire of 175SR14. Good agreement between the predicted and the measured results was obtained for two dimensional contact pressure distribution and the camber thrust characterized by the camber angle.


1996 ◽  
Vol 05 (04) ◽  
pp. 653-670 ◽  
Author(s):  
CÉLINE FIORINI ◽  
JEAN-MICHEL NUNZI ◽  
FABRICE CHARRA ◽  
IFOR D.W. SAMUEL ◽  
JOSEPH ZYSS

An original poling method using purely optical means and based on a dual-frequency interference process is presented. We show that the coherent superposition of two beams at fundamental and second-harmonic frequencies results in a polar field with an irreducible rotational spectrum containing both a vector and an octupolar component. This enables the method to be applied even to molecules without a permanent dipole such as octupolar molecules. After a theoretical analysis of the process, we describe different experiments aiming at light-induced noncentrosymmetry performed respectively on one-dimensional Disperse Red 1 and octupolar Ethyl Violet molecules. Macroscopic octupolar patterning of the induced order is demonstrated in both transient and permanent regimes. Experimental results show good agreement with theory.


2011 ◽  
Vol 97 (5) ◽  
pp. 728-733
Author(s):  
Yang Liu ◽  
Xiasheng Guo ◽  
Zhao Da ◽  
Dong Zhang ◽  
Xiufen Gong

This article proposes an acoustic nonlinear approach combined with the time reversal technique to image cracks in long bones. In this method, the scattered ultrasound generated from the crack is recorded, and the third harmonic nonlinear component of the ultrasonic signal is used to reconstruct an image of the crack by the time reversal process. Numerical simulations are performed to examine the validity of this approach. The fatigue long bone is modeled as a hollow cylinder with a crack of 1, 0.1, and 0.225 mm in axial, radial and circumferential directions respectively. A broadband 500 kHz ultrasonic signal is used as the exciting signal, and the extended three-dimensional Preisach-Mayergoyz model is used to describe the nonclassical nonlinear dynamics of the crack. Time reversal is carried out by using the filtered third harmonic component. The localization capability depends on the radial depth of the crack.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4160
Author(s):  
Waqar Uddin ◽  
Tiago D. C. Busarello ◽  
Kamran Zeb ◽  
Muhammad Adil Khan ◽  
Anil Kumar Yedluri ◽  
...  

This paper proposed a control method for output and circulating currents of modular multilevel converter (MMC). The output and circulating current are controlled with the help of arm currents, which contain DC, fundamental frequency, and double frequency components. The arm current is transformed into a stationary reference frame (SRF) to isolate the DC and AC components. The AC component is controlled with a conventional proportional resonant (PR) controller, while the DC component is controlled by a proportional controller. The effective control of the upper arm and lower arm ultimately controls the output current so that it delivers the required power to the grid and circulating current in such a way that the second harmonic component is completely vanished leaving behind only the DC component. Comparative results of leg-level control based on PR controller are included in the paper to show the effectiveness of the proposed control scheme. A three-phase, five-level MMC is developed in MATLAB/Simulink to verify the effectiveness of the proposed control method.


Sign in / Sign up

Export Citation Format

Share Document