scholarly journals Powder Reuse Cycles in Electron Beam Powder Bed Fusion—Variation of Powder Characteristics

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4602
Author(s):  
Gitanjali Shanbhag ◽  
Mihaela Vlasea

A path to lowering the economic barrier associated with the high cost of metal additively manufactured components is to reduce the waste via powder reuse (powder cycled back into the process) and recycling (powder chemically, physically, or thermally processed to recover the original properties) strategies. In electron beam powder bed fusion, there is a possibility of reusing 95–98% of the powder that is not melted. However, there is a lack of systematic studies focusing on quantifying the variation of powder properties induced by number of reuse cycles. This work compares the influence of multiple reuse cycles, as well as powder blends created from reused powder, on various powder characteristics such as the morphology, size distribution, flow properties, packing properties, and chemical composition (oxygen and nitrogen content). It was found that there is an increase in measured response in powder size distribution, tapped density, Hausner ratio, Carr index, basic flow energy, specific energy, dynamic angle of repose, oxygen, and nitrogen content, while the bulk density remained largely unchanged.

Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1535 ◽  
Author(s):  
Maximilian A. Dechet ◽  
Ina Baumeister ◽  
Jochen Schmidt

In this study, the development of a polyoxymethylene (POM) feedstock material for the powder bed fusion (PBF) of polymers is outlined. POM particles are obtained via liquid-liquid phase separation (LLPS) and precipitation, also known as the solution-dissolution process. In order to identify suitable POM solvent systems for LLPS and precipitation, in the first step, a solvent screening based on solubility parameters was performed, and acetophenone and triacetin were identified as the most promising suitable moderate solvents for POM. Cloud point curves were measured for both solvents to derive suitable temperature profiles and polymer concentrations for the solution-dissolution process. In the next step, important process parameters, namely POM concentration and stirring conditions, were studied to elucidate their effect on the product’s properties. The product particles obtained from both aforementioned solvents were characterized with regard to their morphology and size distribution, as well as their thermal properties (cf. the PBF processing window) and compared to a cryo-milled POM PBF feedstock. Both solvents allowed for precipitation of POM particles of an appropriate size distribution for PBF for polymer concentrations of at least up to 20 wt.%. Finally, a larger powder batch for application in the PBF process was produced by precipitation from the preferred solvent acetophenone. This POM powder was further analyzed concerning its flowability, Hausner ratio, and mass-specific surface area. Finally, test specimens, namely a complex gyroid body and a detailed ornament, were successfully manufactured from this feedstock powder showing appropriate bulk solid and thermal properties to demonstrate PBF processability. In summary, a processable and suitable POM PBF feedstock could be developed based on the non-mechanical solution dissolution process, which, to the authors’ best knowledge, has not been reported in previous studies.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 205
Author(s):  
Cekdar Vakifahmetoglu ◽  
Beyza Hasdemir ◽  
Lisa Biasetto

This paper investigates the spreadability of the spherical CoCrWMo powder for laser- powder bed fusion (PBF-LB) by using image processing algorithms coded in MATLAB. Besides, it also aims to examine the spreadability dependence with the other characteristics such as powder size distribution, apparent density, angle of repose. Powder blends in four different particle size distributions are prepared, characterized, and spreadability tests are performed with the PBF-LB. The results demonstrate that an increase in fine particle ratio by volume (below 10 µm) enhances the agglomeration and decreases the flowability, causing poor spreadability. These irregularities on the spread layers are quantified with simple illumination invariant analysis. A clear relation between powder spreadability and 3D printed structures properties in terms of residual porosity could not be defined since structural defects in 3D printed parts also depends on other processing parameters such as spatter formation or powder size over layer height ratio.


2021 ◽  
Author(s):  
Sabrine Ziri ◽  
Anis Hor ◽  
Catherine Mabru

Despite the attractive capabilities of additive manufacturing (AM) technology, the industrialization of these processes remains very low. This is attributed to the complexes physical phenomena involved in the AM process and the layered structure of the produced parts. Intense research work is still needed for the prediction and optimization of AM parts mechanical properties. In this study, the influence of particle size distribution (PSD) of stainless steel 316L (SS 316L) powders on AM parts properties was investigated. Four PSD were used to produce test parts and compare the resulting porosity, surface roughness and macro-hardness. The SS 316L specimens were fabricated by Laser Powder Bed Fusion process (LPBF) on a SLM 125HL machine using variations in laser power and scan velocity. Computed scan tomography (CT) was used to characterize the defects. Lack of fusion and keyhole defects were detected. Defects were detected even in nearly dense parts. The powder size distribution was found to affect the porosity. Results from CT tests were used to identify the minimum achievable porosities for each powder, through the appropriate selection of process parameters. The macro-hardness and surface roughness were found to vary with the powder properties.


2019 ◽  
Author(s):  
Yufan Zhao ◽  
Yuichiro Koizumi ◽  
Kenta Aoyagi ◽  
Daixiu Wei ◽  
Kenta Yamanaka ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 796
Author(s):  
Aya Takase ◽  
Takuya Ishimoto ◽  
Naotaka Morita ◽  
Naoko Ikeo ◽  
Takayoshi Nakano

Ti-6Al-4V alloy fabricated by laser powder bed fusion (L-PBF) and electron beam powder bed fusion (EB-PBF) techniques have been studied for applications ranging from medicine to aviation. The fabrication technique is often selected based on the part size and fabrication speed, while less attention is paid to the differences in the physicochemical properties. Especially, the relationship between the evolution of α, α’, and β phases in as-grown parts and the fabrication techniques is unclear. This work systematically and quantitatively investigates how L-PBF and EB-PBF and their process parameters affect the phase evolution of Ti-6Al-4V and residual stresses in the final parts. This is the first report demonstrating the correlations among measured parameters, indicating the lattice strain reduces, and c/a increases, shifting from an α’ to α+β or α structure as the crystallite size of the α or α’ phase increases. The experimental results combined with heat-transfer simulation indicate the cooling rate near the β transus temperature dictates the resulting phase characteristics, whereas the residual stress depends on the cooling rate immediately below the solidification temperature. This study provides new insights into the previously unknown differences in the α, α’, and β phase evolution between L-PBF and EB-PBF and their process parameters.


2021 ◽  
pp. 102121
Author(s):  
Bryan Lim ◽  
Hansheng Chen ◽  
Zibin Chen ◽  
Nima Haghdadi ◽  
Xiaozhou Liao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document