scholarly journals Spreadability of Metal Powders for Laser-Powder Bed Fusion via Simple Image Processing Steps

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 205
Author(s):  
Cekdar Vakifahmetoglu ◽  
Beyza Hasdemir ◽  
Lisa Biasetto

This paper investigates the spreadability of the spherical CoCrWMo powder for laser- powder bed fusion (PBF-LB) by using image processing algorithms coded in MATLAB. Besides, it also aims to examine the spreadability dependence with the other characteristics such as powder size distribution, apparent density, angle of repose. Powder blends in four different particle size distributions are prepared, characterized, and spreadability tests are performed with the PBF-LB. The results demonstrate that an increase in fine particle ratio by volume (below 10 µm) enhances the agglomeration and decreases the flowability, causing poor spreadability. These irregularities on the spread layers are quantified with simple illumination invariant analysis. A clear relation between powder spreadability and 3D printed structures properties in terms of residual porosity could not be defined since structural defects in 3D printed parts also depends on other processing parameters such as spatter formation or powder size over layer height ratio.

2021 ◽  
Author(s):  
Sabrine Ziri ◽  
Anis Hor ◽  
Catherine Mabru

Despite the attractive capabilities of additive manufacturing (AM) technology, the industrialization of these processes remains very low. This is attributed to the complexes physical phenomena involved in the AM process and the layered structure of the produced parts. Intense research work is still needed for the prediction and optimization of AM parts mechanical properties. In this study, the influence of particle size distribution (PSD) of stainless steel 316L (SS 316L) powders on AM parts properties was investigated. Four PSD were used to produce test parts and compare the resulting porosity, surface roughness and macro-hardness. The SS 316L specimens were fabricated by Laser Powder Bed Fusion process (LPBF) on a SLM 125HL machine using variations in laser power and scan velocity. Computed scan tomography (CT) was used to characterize the defects. Lack of fusion and keyhole defects were detected. Defects were detected even in nearly dense parts. The powder size distribution was found to affect the porosity. Results from CT tests were used to identify the minimum achievable porosities for each powder, through the appropriate selection of process parameters. The macro-hardness and surface roughness were found to vary with the powder properties.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 422
Author(s):  
Dana Ashkenazi ◽  
Alexandra Inberg ◽  
Yosi Shacham-Diamand ◽  
Adin Stern

Additive manufacturing (AM) revolutionary technologies open new opportunities and challenges. They allow low-cost manufacturing of parts with complex geometries and short time-to-market of products that can be exclusively customized. Additive manufactured parts often need post-printing surface modification. This study aims to review novel environmental-friendly surface finishing process of 3D-printed AlSi10Mg parts by electroless deposition of gold, silver, and gold–silver alloy (e.g., electrum) and to propose a full process methodology suitable for effective metallization. This deposition technique is simple and low cost method, allowing the metallization of both conductive and insulating materials. The AlSi10Mg parts were produced by the additive manufacturing laser powder bed fusion (AM-LPBF) process. Gold, silver, and their alloys were chosen as coatings due to their esthetic appearance, good corrosion resistance, and excellent electrical and thermal conductivity. The metals were deposited on 3D-printed disk-shaped specimens at 80 and 90 °C using a dedicated surface activation method where special functionalization of the printed AlSi10Mg was performed to assure a uniform catalytic surface yielding a good adhesion of the deposited metal to the substrate. Various methods were used to examine the coating quality, including light microscopy, optical profilometry, XRD, X-ray fluorescence, SEM–energy-dispersive spectroscopy (EDS), focused ion beam (FIB)-SEM, and XPS analyses. The results indicate that the developed coatings yield satisfactory quality, and the suggested surface finishing process can be used for many AM products and applications.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4879
Author(s):  
Mireia Vilanova ◽  
Rubén Escribano-García ◽  
Teresa Guraya ◽  
Maria San Sebastian

A method to find the optimum process parameters for manufacturing nickel-based superalloy Inconel 738LC by laser powder bed fusion (LPBF) technology is presented. This material is known to form cracks during its processing by LPBF technology; thus, process parameters have to be optimized to get a high quality product. In this work, the objective of the optimization was to obtain samples with fewer pores and cracks. A design of experiments (DoE) technique was implemented to define the reduced set of samples. Each sample was manufactured by LPBF with a specific combination of laser power, laser scan speed, hatch distance and scan strategy parameters. Using the porosity and crack density results obtained from the DoE samples, quadratic models were fitted, which allowed identifying the optimal working point by applying the response surface method (RSM). Finally, five samples with the predicted optimal processing parameters were fabricated. The examination of these samples showed that it was possible to manufacture IN738LC samples free of cracks and with a porosity percentage below 0.1%. Therefore, it was demonstrated that RSM is suitable for obtaining optimum process parameters for IN738LC alloy manufacturing by LPBF technology.


Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1273 ◽  
Author(s):  
Barry Mooney ◽  
Kyriakos Kourousis

Maraging steel is an engineering alloy which has been widely employed in metal additive manufacturing. This paper examines manufacturing and post-processing factors affecting the properties of maraging steel fabricated via laser powder bed fusion (L-PBF). It covers the review of published research findings on how powder quality feedstock, processing parameters, laser scan strategy, build orientation and heat treatment can influence the microstructure, density and porosity, defects and residual stresses developed on L-PBF maraging steel, with a focus on the maraging steel 300 alloy. This review offers an evaluation of the resulting mechanical properties of the as-built and heat-treated maraging steel 300, with a focus on anisotropic characteristics. Possible directions for further research are also identified.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1831
Author(s):  
Robert Bidulsky ◽  
Federico Simone Gobber ◽  
Jana Bidulska ◽  
Marta Ceroni ◽  
Tibor Kvackaj ◽  
...  

In the last years, functionalized powders are becoming of increasing interest in additive manufacturing (particularly in laser powder bed fusion processing, L-PBF), due to their improved flowability and enhanced processability, particularly in terms of laser absorbance. Functionalized powders may also provide higher final mechanical or physical properties in the manufactured parts, like an increased hardness, a higher tensile strength, and density levels close to theoretical. Coatings represent a possible interesting approach for powders’ functionalizing. Different coating methods have been studied in the past years, either mechanical or non-mechanical. This work aims to present an overview of the currently obtained coated powders, analyzing in detail the processes adopted for their production, the processability of the coated systems, and the mechanical and physical properties of the final parts obtained by using L-PBF for the powders processing.


Sign in / Sign up

Export Citation Format

Share Document