scholarly journals Identification of a Biostimulating Potential of an Organic Biomaterial Based on the Botanical Extract from Arctium lappa L. Roots

Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4920
Author(s):  
Agnieszka Szparaga ◽  
Sławomir Kocira ◽  
Ireneusz Kapusta

The development of novel biomaterials based on plant extracts is expected to boost yields without adversely affecting environmental diversity. The potential biostimulating effects have so far been underreported. The assessment of the stimulating effect of botanical biomaterials is essential in the cultivation of economically-important crops. An attempt was undertaken in this study to develop a new biostimulating material in the form of granules, based on an extract from the roots of Arctium lappa L. The scope of the research included the characterization of the new material and the identification of its biostimulating potential. The designed and produced biogranulate is rich in bioactive compounds, including polyphenolic compounds, carbohydrates, and micro- and macro-elements. The analysis of the physicochemical properties of the biomaterial has shown that it had the features of intelligent biopreparations, i.e., slow-release preparations, at the pH appropriate for legume plants. Thus, knowledge about the design of new biomaterials is a milestone in the practical development of new perspectives for enhancing sustainability in agriculture.

Author(s):  
X. Lin ◽  
X. K. Wang ◽  
V. P. Dravid ◽  
J. B. Ketterson ◽  
R. P. H. Chang

For small curvatures of a graphitic sheet, carbon atoms can maintain their preferred sp2 bonding while allowing the sheet to have various three-dimensional geometries, which may have exotic structural and electronic properties. In addition the fivefold rings will lead to a positive Gaussian curvature in the hexagonal network, and the sevenfold rings cause a negative one. By combining these sevenfold and fivefold rings with sixfold rings, it is possible to construct complicated carbon sp2 networks. Because it is much easier to introduce pentagons and heptagons into the single-layer hexagonal network than into the multilayer network, the complicated morphologies would be more common in the single-layer graphite structures. In this contribution, we report the observation and characterization of a new material of monolayer graphitic structure by electron diffraction, HREM, EELS.The synthesis process used in this study is reported early. We utilized a composite anode of graphite and copper for arc evaporation in helium.


2020 ◽  
Vol 17 (2) ◽  
pp. 85-89
Author(s):  
Francisco J. Hidalgo ◽  
Nathan A.P. Lorentz ◽  
TinTin B. Luu ◽  
Jonathan D. Tran ◽  
Praveen D. Wickremasinghe ◽  
...  

: Maltodextrins have an increasing number of biomedical and industrial applications due to their attractive physicochemical properties such as biodegradability and biocompatibility. Herein, we describe the development of a synthetic pathway and characterization of thiol-responsive maltodextrin conjugates with dithiomaleimide linkages. 19F NMR studies were also conducted to demonstrate the exchange dynamics of the dithiomaleimide-functionalized sugar end groups.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1497 ◽  
Author(s):  
Isabel Santamaría Vicario ◽  
Lourdes Alameda Cuenca-Romero ◽  
Sara Gutiérrez González ◽  
Verónica Calderón Carpintero ◽  
Ángel Rodríguez Saiz

The properties and the behaviour of plaster mortars designed with Polyurethane Foam Waste (PFW) are studied in this investigation. A characterization of the mixtures is completed, in accordance with the technical specifications of European Norms. The incorporation of polyurethane waste foam can yield porous and lighter mortars, with better resistance to water-vapour permeability, although with weaker mechanical strength and higher levels of absorbency. Nevertheless, suitable mechanical strengths were achieved, resulting in a new material that is compliant with the requirements of the construction industry. The use of PFW in the the manufacture of gypsum mortars for construction reduces the consumption of natural resources and, at the same time, recovers an industrial waste that is otherwise difficult to recycle.


2021 ◽  
Vol 98 ◽  
pp. 103804
Author(s):  
Walter M. Warren-Vega ◽  
Rocío Fonseca-Aguiñaga ◽  
Linda V. González-Gutiérrez ◽  
Francisco Carrasco-Marín ◽  
Ana I. Zárate-Guzmán ◽  
...  

Vaccines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 544
Author(s):  
Giuditta Guerrini ◽  
Antonio Vivi ◽  
Sabrina Gioria ◽  
Jessica Ponti ◽  
Davide Magrì ◽  
...  

Adjuvants have been used for decades to enhance the immune response to vaccines, in particular for the subunit-based adjuvants. Physicochemical properties of the adjuvant-protein antigen complexes, such as size, morphology, protein structure and binding, influence the overall efficacy and safety of the vaccine. Here we show how to perform an accurate physicochemical characterization of the nanoaluminum–ovalbumin complex. Using a combination of existing techniques, we developed a multi-staged characterization strategy based on measurements of increased complexity. This characterization cascade has the advantage of being very flexible and easily adaptable to any adjuvant-protein antigen combinations. It will contribute to control the quality of antigen–adjuvant complexes and immunological outcomes, ultimately leading to improved vaccines.


Sign in / Sign up

Export Citation Format

Share Document