scholarly journals Flexural Behavior of Polyurethane Concrete Reinforced by Carbon Fiber Grid

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5421
Author(s):  
Hongjian Ding ◽  
Quansheng Sun ◽  
Yanqi Wang ◽  
Dongzhe Jia ◽  
Chunwei Li ◽  
...  

In view of the problems of traditional repair materials for anchorage concrete of expansion joints, such as ease of damage and long maintenance cycles, the design of polyurethane concrete was optimized in this article, which could be used for rapid repair of concrete in anchorage zone of expansion joints. A new type of carbon fiber grid–polyurethane concrete system was designed, which makes the carbon fiber grid have an excellent synergistic effect with the quick-hardening and high-strength polyurethane concrete, and improved the flexural bearing capacity of the polyurethane concrete. Through the four-point bending test, the influence of the parameters such as the number of grid layers, grid width, and grid density on the flexural bearing capacity of polyurethane concrete beams was tested. The optimum preparation process parameters of carbon fiber grid were obtained to improve the flexural performance of polyurethane concrete. Compared with the Normal specimen, C-80-1’s average flexural strength increased by 47.7%, the failure strain along the beam height increased by 431.1%, and the failure strain at the bottom of the beam increased by 68.9%. The best width of the carbon fiber grid was 80 mm, and the best number of reinforcement layers was one layer. The test results show that the carbon fiber grid could improve the flexural bearing capacity of polyurethane concrete. The carbon fiber grid–polyurethane concrete system provides a new idea for rapid repair of the anchorage zone of bridge expansion joints, and solves the problems such as ease of damage and long maintenance cycles of traditional repair materials, which can be widely used in the future.

2021 ◽  
Vol 28 (1) ◽  
pp. 139-152
Author(s):  
Teng Huang ◽  
Dongdong Zhang ◽  
Yaxin Huang ◽  
Chengfei Fan ◽  
Yuan Lin ◽  
...  

Abstract In this study, the flexural bearing capacity and failure mechanism of carbon fiber-reinforced aluminum laminate (CARALL) beams with a double-channel cross-section and a 3/2 laminated configuration were experimentally and numerically studied. Two types of specimens using different carbon fiber layup configurations ([0°/90°/0°]3 and [45°/0°/−45°]3) were fabricated using the pressure molding thermal curing forming process. The double-channel CARALL beams were subjected to static three-point bending tests to determine their failure behaviors in terms of ultimate bearing capacity and failure modes. Owing to the shortcomings of the two-dimensional Hashin failure criterion, the user-defined FORTRAN subroutine VUMAT suitable for the ABAQUS/Explicit solver and an analysis algorithm were established to obtain a progressive damage prediction of the CFRP layer using the three-dimensional Hashin failure criterion. Various failure behaviors and mechanisms of the CARALL beams were numerically analyzed. The results indicated that the numerical simulation was consistent with the experimental results for the ultimate bearing capacity and final failure modes, and the failure process of the double-channel CARALL beams could be revealed. The ultimate failure modes of both types of double-channel CARALL beams were local buckling deformation at the intersection of the upper flange and web near the concentrated loading position, which was mainly caused by the delamination failure among different unidirectional plates, tension and compression failure of the matrix, and shear failure of the fiber layers. The ability of each fiber layer to resist damage decreased in the order of 90° fiber layer > 0° fiber layer > 45° fiber layer. Thus, it is suggested that 90°, 0°, and 45° fiber layers should be stacked for double-channel CARALL beams.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jing Ji ◽  
Runbao Zhang ◽  
Chenyu Yu ◽  
Lingjie He ◽  
Hongguo Ren ◽  
...  

In order to study the flexural behavior of simply supported beams consisting of gradient concrete and GFRP bars, 28 simply supported beams were designed. The main parameters included the strength grades of high-strength concrete (HSC), GFRP reinforcement ratio, and sectional height of HSC. Based on nonlinear constitutive models of materials, meanwhile, considering the bond slip between concrete and GFRP bars, five simply supported beams with gradient concrete and five simply supported beams with GFRP bars were simulated, respectively. Then the mid-span load–displacement curves of beams were obtained. By comparing with the experimental data, the rationality of material constitutive models and finite element modeling was verified. Based on this, the parameter analysis of the beams with GFRP bars and gradient concrete was carried out, and the failure modes of the beams were obtained through investigation. The results show that the failure process of the beams can be divided into two stages: elastic stage and working stage with cracks. With the increase of GFRP reinforcement ratio, the flexural bearing capacity of the beams does not change significantly, while their stiffness increases gradually. The flexural bearing capacity of the beams can be significantly improved by appropriately increasing the strength and sectional height of HSC. The ultimate bearing capacity of the beams is 40% higher than that of the GFRP concrete beams. Finally, based on the plane-section assumption, the calculation formula of normal-section flexural bearing capacity of this kind of beams is proposed through statistical regression method.


2013 ◽  
Vol 427-429 ◽  
pp. 94-98
Author(s):  
Tie Cheng Wang ◽  
Wei Kai Wang ◽  
Hai Long Zhao

The flexural behavior of non-holomorphic circular pile and cylindrical pile is respectively evaluated based on the results of finite element analysis with ABAQUS. It is presented that the ultimate bearing capacities of non-holomorphic circular pile and cylindrical pile have little difference. The displacement ductility ratio of non-holomorphic circular pile lies between 3.38 and 3.64, indicating that the NHC pile has better ductility.


2012 ◽  
Vol 226-228 ◽  
pp. 1766-1770
Author(s):  
Zhong Long Li ◽  
Hong Lin Wu ◽  
Zhen Yu Liu ◽  
De Jian Xu ◽  
Hong Jiang Gu ◽  
...  

In this paper, it makes a preliminary study on the material of carbon fiber sheet to reinforce rough sleeper beam in order to enhance the magnitude of ultimate flexural bearing capacity. Considering the actual construction technology and environment, four reinforced concrete sleeper beams are used to experiment simulation to study the influence of carbon fiber sheet to ultimate flexural bearing capacity of reinforced concrete structures. Experiment results show that pasting two layers of carbon fiber sheet under reinforced concrete beam can have about a 25% increase in flexural bearing capacity.


2013 ◽  
Vol 351-352 ◽  
pp. 541-544
Author(s):  
Jiong Feng Liang ◽  
Ming Hua Hu ◽  
Zhi Ping Deng

The flexural behavior of concrete beams reinforced with CFRP-PCPs composite rebars was studied. Experimental results showed that the performance of CFRP-PCPs composite rebars beams is superior to that of CFRP beams at service and ultimate and comparable and even better than RC beams at service condition. Flexural cracks of concrete beams reinforced with CFRP-PCPs composite rebars are hairline before prism cracking, and they widen after the prism cracking Keywords: CFRP-PCPs, composite rebars, beam, flexural


2021 ◽  
pp. 136943322110339
Author(s):  
Jucan Dong ◽  
Yiyan Chen ◽  
Qingxiong Wu ◽  
Aoxiang Hu ◽  
Ruijuan Jiang ◽  
...  

A new type of composite structure, the composite box girder with corrugated steel webs (CSWs) and trusses, is proposed recently. In order to investigate the structural behavior under positive and negative bending moments, flexural tests of the continuous girder were carried out, and the failure modes, deformation patterns, strain distribution, and development of the concrete cracks were investigated. Finite element analysis was conducted to investigate the effect of the range of concrete in the steel tube and the thickness of CSWs on the flexural behavior. The experimental and numerical results show that the test beam has a good ductility and integrity under flexural load. The contribution of CSWs to the flexural bearing capacity is very small and can be neglected. Besides, the plane section assumption is still valid when only top concrete slab and bottom steel tubes are concerned. The concrete filled in bottom steel tubes increases the stiffness and the bearing capacity of the girder. Equations to calculate the flexural bearing capacity under positive and negative bending moments were put forward and then verified with experimental results.


2011 ◽  
Vol 71-78 ◽  
pp. 5080-5083
Author(s):  
Le Zhou ◽  
Hong Tao Liu

To study further mechanical behavior of flexural members of carbon fiber reinforced concrete, this text uses the methods of fiber materials composite principles and balance equations, and derives the elastic modulus of the carbon fiber concrete. The acting principle of carbon fiber in the concrete is analyzed. Based on three bearing stages of carbon fiber reinforced concrete beam, the calculation formulas to flexural bearing capacity of carbon fiber reinforced concrete are given. It is theoretical basis of implication of carbon fibers in civil engineering.


2016 ◽  
Vol 10 (1) ◽  
pp. 598-614 ◽  
Author(s):  
Su Linwang ◽  
Cai Jian ◽  
Chen Qingjun ◽  
Li Guobao ◽  
Zhao Juan

The paper presents an investigation on the flexural behavior of corroded reinforced concrete (RC) beam strengthened with Carbon Fiber Reinforced Polymer (CFRP) sheets. Different levels of corrosion are considered as a new method for classifying the corrosion levels of the corroded RC members. Twenty RC beams with five corrosion levels were fabricated by accelerated corrosion equipment, and then the CFRP were used to strengthen these members, considering the effect of different CFRP layers and different strengthened schemes, finally the static flexural load test was carried out. The test results show that the bearing capacity of the CFRP strengthening corroded RC beams is effectively enhanced, the crack width is restrained, and the flexural stiffness is improved. The ultimate flexural capacity of the specimens strengthened by one layer of CFRP sheet raises by 30% to 50% than that of the unstrengthened ones, with the increase of the corrosion level, the enhancement decreased. With the increase of the number of CFRP layers, the bearing capacity increases, while the increasing ratio reduces with the increase in the number of layers. For specimens with obvious cracks, the effectiveness of the strengthening method by bonding CFRP after cutting or chiseling off concrete method (RM1 or RM2) is higher than the method of bonding CFRP directly (DM). It is suggested that the corroded RC members with Level A, B or C1 can be strengthened by DM, while the other level members should be strengthened by RM1 or RM2. The formulae in current design code are used to predict the flexural bearing capacity of the RC beam strengthened with CFRP and their results are compared with experimental ones. A revised formula that can give a better prediction for multi-layer CFRP strengthening members is also proposed.


Sign in / Sign up

Export Citation Format

Share Document