scholarly journals Analysis of Deformation and Stresses of a Lightweight Floor System (LFS) under Thermal Action

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5727
Author(s):  
Jacek Karpiesiuk ◽  
Tadeusz Chyży

The lightweight floor system (LFS) with a heating coil is one of many types of radiant heating systems. It differs from most of the others, as it has a much higher thermal efficiency at low flow temperature. To verify whether adhesive mortars can safely connect the ceramic floor with the insulating substrate, the deformations and stresses values of all light system layers under thermal action should be checked and compared to their maximum strengths. For this purpose, an LFS test field was conducted using the strain gauges and digital measurement techniques, and floor displacements and deformations were determined. The results obtained from the tests were confirmed by finite element method calculations. It was also found that the stress of each floor component was much lower than their strength. This proves that the LFS with a heating coil, without metal lamellas, meets the safety regulation for use. The results of the analysis can be useful in the design of heated/cooled LFSs.

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1195
Author(s):  
Ali Saberi Derakhtenjani ◽  
Andreas K. Athienitis

This paper presents control strategies to activate energy flexibility for zones with radiant heating systems in response to changes in electricity prices. The focus is on zones with radiant floor heating systems for which the hydronic pipes are located deep in the concrete and, therefore, there is a significant thermal lag. A perimeter zone test-room equipped with a hydronic radiant floor system in an environmental chamber is used as a case study. A low order thermal network model for the perimeter zone, validated with experimental measurements, is utilized to study various control strategies in response to changes in the electrical grid price signal, including short term (nearly reactive) changes of the order of 10–15 min notice. An index is utilized to quantify the building energy flexibility with the focus on peak demand reduction for specific periods of time when the electricity prices are higher than usual. It is shown that the developed control strategies can aid greatly in enhancing the zone energy flexibility and minimizing the cost of electricity and up to 100% reduction in peak power demand and energy consumption is attained during the high-price and peak-demand periods, while maintaining acceptable comfort conditions.


2018 ◽  
Vol 193 ◽  
pp. 03006 ◽  
Author(s):  
Mikhail Pavlov ◽  
Sergey Lukin ◽  
Oleg Derevianko

Commercially available greenhouses are commonly used for provision of year-round growing of agricultural crops at protected ground. In order to provide favorable conditions for plants growth these agricultural constructions should be equipped by artificial heating systems in cold sea-sons. This work presents an overview of basic traditional and alternative heating systems which find their applications in agriculture. Advantages of application of roof radiant heating with infrared radiation sources for green-houses are discussed. It was discovered that now there is no appropriate mathematical model of greenhouse radiant heating, which takes into account both heat and mass exchange processes. Here we propose a mathematical model of radiant heating, which includes equation system of both heat and mass exchange processes for greenhouse, its enclosure and soil. The numer-ical calculations were performed for commercially available greenhouse “Farmer 7.5”. We investigated the impact of external air temperature and heat exchange rate on the following greenhouse radiant heating characteris-tics: internal air temperature, heating system thermal power and water dis-charge for soil watering.


2019 ◽  
Vol 111 ◽  
pp. 06061
Author(s):  
Sung Ho Choi ◽  
Tae Won Kim ◽  
Jin Chul Park

This research analyzes the time lag, which is a thermal storage performance parameter, when a phase change material is applied to the floor heating system of a mock-up laboratory. The following results are obtained. In terms of the time required for the floor surface temperature to reach 30 °C, the time lag of Room 2 (i.e., the room with the PCM-based floor system) was observed to be 15 min. Additionally, in terms of the time required for the floor surface temperature to decrease to 22 °C, Room 2 exhibited a time lag of 5 h 2 min. Therefore, the study concluded that longer time lags are observed with floor heating systems with PCM.


CORROSION ◽  
1952 ◽  
Vol 8 (4) ◽  
pp. 140-142 ◽  
Author(s):  
J. F. HIRSHFELD ◽  
L P. SCHAEFER

2013 ◽  
Vol 61 ◽  
pp. 233-238 ◽  
Author(s):  
Milorad Bojić ◽  
Dragan Cvetković ◽  
Vesna Marjanović ◽  
Mirko Blagojević ◽  
Zorica Djordjević

Sign in / Sign up

Export Citation Format

Share Document