scholarly journals Performance of Self-Healing Cementitious Composites Using Aligned Tubular Healing Fiber

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6162
Author(s):  
Ru Mu ◽  
Dogniman Landry Soro ◽  
Xiaowei Wang ◽  
Longbang Qing ◽  
Guorui Cao ◽  
...  

From the perspective of improving the self-healing method in construction, a tubular healing fiber was adopted as a container to improve the encapsulation capacity, which was available using a micro-capsule as a container. Knowing the direction of the stresses to which structure members are subjected, this research investigated the influence of aligning tubular healing fibers parallel to intended stress into a cementitious composite to increase the self-healing capability. For that, a healing agent was encapsulated into a tubular healing fiber made with polyvinylidene of fluoride resin (PVDF). Then, the healing fiber was combined with steel fibers to align both fibers together parallel to the direction of an intended splitting tensile stress when subjected to a magnetic field in a cylindrical cementitious composite. The alignment method and the key point through which the alignment of the healing fibers could efficiently improve autonomic self-healing were investigated. Since the magnetic field is known to be able to drag steel to an expected direction, steel fibers were combined with the healing fibers to form a hybrid fiber that aligned both fibers together. The required mixture workability was investigated to avoid the sinking of the healing fibers into the mixture. The healing efficiency, according to the orientation of the healing fibers in the composite matrix, was evaluated through a permeability test and a repetitive splitting tensile test. The aligned healing fibers performed better than the randomly distributed healing fibers. However, according to the healing efficiency with aligned healing fibers, it was deduced that the observed decreasing effect of the container’s alignment on the specimen’s mechanical properties was low enough to be neglected.

2013 ◽  
Vol 07 (03) ◽  
pp. 1350014 ◽  
Author(s):  
BIQIN DONG ◽  
NINGXU HAN ◽  
MING ZHANG ◽  
XIANFENG WANG ◽  
HONGZHI CUI ◽  
...  

In the study, a novel microcapsule technology based self-healing system for concrete structures has been developed. Through situ-polymerization reaction, the microcapsule is formed by urea formaldehyde resin to pack the epoxy material, which is applied to cementitious composite to achieve self-healing effect. The experimental results revealed that the self-healing efficiency of the composite can be accessed from the recovery of the permeability and strength for the cracked cementitious specimens as the healing agent in the microcapsule acting on the cracks directly. Scanning electronic microscope (SEM/EDX) results show that the epoxy resin is released along with the cracking of the cementitious composite and prevent from cracks continued growth. Further studies show that the self-healing efficiency is affected by the pre-loading of composite, particle size of microcapsule, aging duration of healing agent and so on.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1941 ◽  
Author(s):  
Alberto Jiménez-Suárez ◽  
Gilberto Del Rosario ◽  
Xoan Xosé Sánchez-Romate ◽  
Silvia González Prolongo

Polycaprolactone (PCL) is being researched as a self-healing agent blended with epoxy resins by several reasons: low melting point, differential expansive bleeding (DBE) of PCL, and reaction induced phase separation (RIPS) of PCL/epoxy blends. In this work, PCL/epoxy blends were prepared with different PCL ratios and two different epoxy networks, cured with aliphatic and aromatic amine hardeners. The curing kinetic affects to the blend morphology, varying its critical composition. The self-healing behavior is strongly affected by the blend morphology, reaching the maximum efficiency for co-continuous phases. Blends with dispersed PCL phase into epoxy matrix can also show high self-healing efficiency because of the low PCL domains that act as reservoir of self-healing agent. In this last case, it was confirmed that the most efficient self-healable blends are one whose area occupied by PCL phase is the largest. These blends remain the good thermal and mechanical behavior of epoxy matrix, in contrast to the worsened properties of blends with bicontinuous morphology. In this work, the self-healing mechanism of blends is studied in depth by scanning electron microscopy. Furthermore, the influence of the geometry of the initial surface damage is also evaluated, affecting to the measurement of self-healing efficiency.


2021 ◽  
Vol 11 (2) ◽  
pp. 700
Author(s):  
Irene A. Kanellopoulou ◽  
Ioannis A. Kartsonakis ◽  
Costas A. Charitidis

Cementitious structures have prevailed worldwide and are expected to exhibit further growth in the future. Nevertheless, cement cracking is an issue that needs to be addressed in order to enhance structure durability and sustainability especially when exposed to aggressive environments. The purpose of this work was to examine the impact of the Superabsorbent Polymers (SAPs) incorporation into cementitious composite materials (mortars) with respect to their structure (hybrid structure consisting of organic core—inorganic shell) and evaluate the microstructure and self-healing properties of the obtained mortars. The applied SAPs were tailored to maintain their functionality in the cementitious environment. Control and mortar/SAPs specimens with two different SAPs concentrations (1 and 2% bwoc) were molded and their mechanical properties were determined according to EN 196-1, while their microstructure and self-healing behavior were evaluated via microCT. Compressive strength, a key property for mortars, which often degrades with SAPs incorporation, in this work, practically remained intact for all specimens. This is coherent with the porosity reduction and the narrower range of pore size distribution for the mortar/SAPs specimens as determined via microCT. Moreover, the self-healing behavior of mortar-SAPs specimens was enhanced up to 60% compared to control specimens. Conclusively, the overall SAPs functionality in cementitious-based materials was optimized.


2021 ◽  
pp. 105678952110112
Author(s):  
Kaihang Han ◽  
Jiann-Wen Woody Ju ◽  
Yinghui Zhu ◽  
Hao Zhang ◽  
Tien-Shu Chang ◽  
...  

The cementitious composites with microencapsulated healing agents have become a class of hotspots in the field of construction materials, and they have very broad application prospects and research values. The in-depth study on multi-scale mechanical behaviors of microencapsulated self-healing cementitious composites is critical to quantitatively account for the mechanical response during the damage-healing process. This paper proposes a three-dimensional evolutionary micromechanical model to quantitatively explain the self-healing effects of microencapsulated healing agents on the damage induced by microcracks. By virtue of the proposed 3 D micromechanical model, the evolutionary domains of microcrack growth (DMG) and corresponding compliances of the initial, extended and repaired phases are obtained. Moreover, the elaborate studies are conducted to inspect the effects of various system parameters involving the healing efficiency, fracture toughness and preloading-induced damage degrees on the compliances and stress-strain relations. The results indicate that relatively significant healing efficiency, preloading-induced damage degree and the fracture toughness of polymerized healing agent with the matrix will lead to a higher compressive strength and stiffness. However, the specimen will break owing to the nucleated microcracks rather than the repaired kinked microcracks. Further, excessive higher values of healing efficiency, preloading-induced damage degree and the fracture toughness of polymerized healing agent with the matrix will not affect the compressive strength of the cementitious composites. Therefore, a stronger matrix is required. To achieve the desired healing effects, the specific parameters of both the matrix and microcapsules should be selected prudently.


2021 ◽  
Author(s):  
Ricardo Hungria ◽  
Momen Mousa ◽  
Marwa Hassan ◽  
Omar Omar ◽  
Andrea Gavilanes ◽  
...  

2018 ◽  
Vol 9 (6) ◽  
pp. 723-736 ◽  
Author(s):  
Elisa Calabrese ◽  
Pasquale Longo ◽  
Carlo Naddeo ◽  
Annaluisa Mariconda ◽  
Luigi Vertuccio ◽  
...  

PurposeThe purpose of this paper is to highlight the relevant role of the stereochemistry of two Ruthenium catalysts on the self-healing efficiency of aeronautical resins.Design/methodology/approachHere, a very detailed evaluation on the stereochemistry of two new ruthenium catalysts evidences the crucial role of the spatial orientation of phenyl groups in the N-heterocyclic carbene ligands in determining the temperature range within the curing cycles is feasible without deactivating the self-healing mechanisms (ring-opening metathesis polymerization reactions) inside the thermosetting resin. The exceptional activity and thermal stability of the HG2MesPhSyncatalyst, with the syn orientation of phenyl groups, highlight the relevant potentiality and the future perspectives of this complex for the activation of the self-healing function in aeronautical resins.FindingsThe HG2MesPhSyncomplex, with the syn orientation of the phenyl groups, is able to activate metathesis reactions within the highly reactive environment of the epoxy thermosetting resins, cured up to 180°C, while the other stereoisomer, with the anti-orientation of the phenyl groups, does not preserve its catalytic activity in these conditions.Originality/valueIn this paper, a comparison between the self-healing functionality of two catalytic systems has been performed, using metathesis tests and FTIR spectroscopy. In the field of the design of catalytic systems for self-healing structural materials, a very relevant result has been found: a slight difference in the molecular stereochemistry plays a key role in the development of self-healing materials for aeronautical and aerospace applications.


2019 ◽  
Vol 810 ◽  
pp. 119-124
Author(s):  
Wataru Nakao ◽  
Taira Hayakawa ◽  
Tesuro Yanaseko ◽  
Shingo Ozaki

The availability of TiC healing agent has been evaluated in low temperature self-healing behavior of Al2O3 based self-healing ceramics. For this purpose, some technical issues to actualize the advanced fiber-reinforced self-healing ceramics containing TiC based interlayer as healing agent were discussed. Especially, the mechanical matching between the matrix and the interlayer was focused. Moreover, the self-healing behavior of the advanced shFRC containing the optimized TiC based healing agent was investigated. As a result, 30 vol% TiC-70 vol% Al2O3 interlayer was confirmed to be the optimized healing agent in the self-healing ceramics, and the self-healing ceramics was found to enable to attain the perfect healing at 600°C within 10 min. And we succeeded in prototype production of fiber-reinforced self-healing ceramics for low pressure turbine blade.


Sign in / Sign up

Export Citation Format

Share Document