scholarly journals Highly Insulative PEG-Grafted Cellulose Polyurethane Foams—From Synthesis to Application Properties

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6363
Author(s):  
Aleksandra Grząbka-Zasadzińska ◽  
Przemysław Bartczak ◽  
Sławomir Borysiak

In this paper, native cellulose I was subjected to alkaline treatment. As a result, cellulose I was transformed to cellulose II and some nanometric particles were formed. Both polymorphic forms of cellulose were modified with poly(ethylene glycol) (PEG) and then used as fillers for polyurethane. Composites were prepared in a one-step process. Cellulosic fillers were characterized in terms of their chemical (Fourier transformation infrared spectroscopy) and supermolecular structure (X-ray diffraction), as well as their particle size. Investigation of composite polyurethane included measurements of density, characteristic processing times of foam formation, compression strength, dimensional stability, water absorption, and thermal conductivity. Much focus was put on the application aspect of the produced insulation polyurethane foams. It was shown that modification of cellulosic filler with poly(ethylene glycol) has a positive influence on formation of polyurethane composites—if modified filler was used, the values of compression strength and density increased, while water sorption and thermal conductivity decreased. Moreover, it was proven that the introduction of cellulosic fillers into the polyurethane matrix does not deteriorate the strength or thermal properties of the foams, and that composites with such fillers have good application potential.

2019 ◽  
Vol 10 (10) ◽  
Author(s):  
Anton Bonartsev ◽  
Vera Voinova ◽  
Elizaveta Akoulina ◽  
Andrey Dudun ◽  
Irina Zharkova ◽  
...  

2007 ◽  
Vol 32 (5) ◽  
pp. 431-446 ◽  
Author(s):  
Tahar Bartil ◽  
Mahmoud Bounekhel ◽  
Cedric Calberg ◽  
Robert Jerome

2019 ◽  
Author(s):  
Alex Khang ◽  
Andrea Gonzalez Rodriguez ◽  
Megan E. Schroeder ◽  
Jacob Sansom ◽  
Emma Lejeune ◽  
...  

2019 ◽  
Vol 14 (3) ◽  
pp. 280-291 ◽  
Author(s):  
Jaleh Varshosaz ◽  
Farshid Hassanzadeh ◽  
Batool Hashemi-Beni ◽  
Mohsen Minaiyan ◽  
Saeedeh Enteshari

Background: Due to the low water solubility of Docetaxel (DTX), it is formulated with ethanol and Tween 80 with lots of side effects. For this reason, special attention has been paid to formulate it in new drug nano-carriers. Objective: The goal of this study was to evaluate the safety, antitumor activity and tissue distribution of the novel synthesized Raloxifene (RA) targeted polymeric micelles. Methods: DTX-loaded RA-targeted polymeric micelles composed of poly(styrene-maleic acid)- poly(amide-ether-ester-imide)-poly(ethylene glycol) (SMA-PAEE-PEG) were prepared and their antitumor activity was studied in MC4-L2 tumor-bearing mice compared with non-targeted micelles and free DTX. Safety of the micelles was studied by Hematoxylin and Eosin (H&E) staining of tumors and major organs of the mice. The drug accumulation in the tumor and major organs was measured by HPLC method. Results: The results showed better tumor growth inhibition and increased survival of mice treated with DTX-loaded in targeted micelles compared to the non-targeted micelles and free DTX. Histopathological studies, H&E staining of tumors and immunohistochemical examination showed the potential of DTX-loaded RA-targeted micelles to inhibit tumor cells proliferation. The higher accumulation of the DTX in the tumor tissue after injection of the micelles compared to the free DTX may indicate the higher uptake of the targeted micelles by the G-Protein-Coupled Estrogen Receptors (GPER). Conclusion: The results indicate that RA-conjugated polymeric micelles may be a strong and effective drug delivery system for DTX therapy and uptake of the drug into tumor cells, and overcome the disadvantages and side effects of conventional DTX.


Sign in / Sign up

Export Citation Format

Share Document