scholarly journals Microstructure and In Vitro Evaluation of Extruded and Hot Drawn Alloy MgCa0.7 for Biodegradable Surgical Wires

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6673
Author(s):  
Andrij Milenin ◽  
Mirosław Wróbel ◽  
Piotr Kustra ◽  
Dorota Byrska-Wójcik ◽  
Joanna Sulej-Chojnacka ◽  
...  

The MgCa0.7 alloy may be a promising material for biodegradable surgical wires. In this paper, the technology for producing surgical wires from this alloy has been developed, based both on finite element modelling and experimental study. In particular, the extrusion and hot-drawing effects on the mechanical properties, microstructures, in-vitro rates of biocorrosion, and cytotoxicity to human cancer cells (SaOS-2) and healthy (hPDL) ones, have been determined. An approximately 30–40% increase in corrosion rate due to increasing hot-drawing temperature was observed. An effect of hot-drawing temperature on cytotoxicity was also found. Notably, at various stages of the final wires’ production, the MgCa0.7 alloy became toxic to cancer cells. This cytotoxicity depended on the alloys’ processing parameters and was maximal for the as-extruded rod and for the wires immediately after hot drawing at 440 °C. Thus, the careful selection of processing parameters makes it possible to obtain a product that is not only a promising candidate for biodegradable surgical wires, but one which also has intrinsic bioactive properties that produce antitumor activity.

2021 ◽  
Vol 22 (16) ◽  
pp. 8372
Author(s):  
Ana María Zárate ◽  
Christian Espinosa-Bustos ◽  
Simón Guerrero ◽  
Angélica Fierro ◽  
Felipe Oyarzún-Ampuero ◽  
...  

The Smoothened (SMO) receptor is the most druggable target in the Hedgehog (HH) pathway for anticancer compounds. However, SMO antagonists such as vismodegib rapidly develop drug resistance. In this study, new SMO antagonists having the versatile purine ring as a scaffold were designed, synthesised, and biologically tested to provide an insight to their mechanism of action. Compound 4s was the most active and the best inhibitor of cell growth and selectively cytotoxic to cancer cells. 4s induced cell cycle arrest, apoptosis, a reduction in colony formation and downregulation of PTCH and GLI1 expression. BODIPY-cyclopamine displacement assays confirmed 4s is a SMO antagonist. In vivo, 4s strongly inhibited tumour relapse and metastasis of melanoma cells in mice. In vitro, 4s was more efficient than vismodegib to induce apoptosis in human cancer cells and that might be attributed to its dual ability to function as a SMO antagonist and apoptosis inducer.


2021 ◽  
Vol 45 (11) ◽  
pp. 5176-5183
Author(s):  
Ichraf Slimani ◽  
Serap Şahin-Bölükbaşı ◽  
Mustafa Ulu ◽  
Enes Evren ◽  
Nevin Gürbüz ◽  
...  

A series of benzimidazolium salts and their [RhCl(NHC)(COD)] complexes were synthesized. All compounds were screened for in vitro cytotoxic activities against a panel of human cancer cells (HT-29 colon, Ishikawa endometrial, U-87 glioblastoma) using the MTT assay for 48 h incubation time.


2015 ◽  
Vol 3 (3) ◽  
pp. 457-468 ◽  
Author(s):  
Ishita Matai ◽  
Abhay Sachdev ◽  
P. Gopinath

Herein, we report the development of a poly(amidoamine) (PAMAM) dendrimer based multicomponent therapeutic agent forin vitrocancer therapy applications.


2019 ◽  
Vol 71 (1) ◽  
pp. 165-180 ◽  
Author(s):  
Tomasz Kowalczyk ◽  
Przemysław Sitarek ◽  
Ewa Skała ◽  
Monika Toma ◽  
Marzena Wielanek ◽  
...  

2017 ◽  
Vol 3 (5) ◽  
pp. 055009
Author(s):  
Daniela Bettega ◽  
Paola Calzolari ◽  
Mario Ciocca ◽  
Angelica Facoetti ◽  
Miriam Lafiandra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document