scholarly journals Brillouin and Raman Micro-Spectroscopy: A Tool for Micro-Mechanical and Structural Characterization of Cortical and Trabecular Bone Tissues

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6869
Author(s):  
Martina Alunni Cardinali ◽  
Assunta Morresi ◽  
Daniele Fioretto ◽  
Leonardo Vivarelli ◽  
Dante Dallari ◽  
...  

Human bone is a specialized tissue with unique material properties, providing mechanical support and resistance to the skeleton and simultaneously assuring capability of adaptation and remodelling. Knowing the properties of such a structure down to the micro-scale is of utmost importance, not only for the design of effective biomimetic materials but also to be able to detect pathological alterations in material properties, such as micro-fractures or abnormal tissue remodelling. The Brillouin and Raman micro-spectroscopic (BRmS) approach has the potential to become a first-choice technique, as it is capable of simultaneously investigating samples’ mechanical and structural properties in a non-destructive and label-free way. Here, we perform a mapping of cortical and trabecular bone sections of a femoral epiphysis, demonstrating the capability of the technique for discovering the morpho-mechanics of cells, the extracellular matrix, and marrow constituents. Moreover, the interpretation of Brillouin and Raman spectra merged with an approach of data mining is used to compare the mechanical alterations in specimens excised from distinct anatomical areas and subjected to different sample processing. The results disclose in both cases specific alterations in the morphology and/or in the tissue chemical make-up, which strongly affects bone mechanical properties, providing a method potentially extendable to other important biomedical issues.

The Analyst ◽  
2015 ◽  
Vol 140 (15) ◽  
pp. 4967-4980 ◽  
Author(s):  
Dmitry Kurouski ◽  
Richard P. Van Duyne ◽  
Igor K. Lednev

Applications of Raman spectroscopy, a label-free non-destructive technique, for the structural characterization of amyloidogenic proteins, prefibrilar oligomers, and mature fibrils.


2012 ◽  
Vol 2012 ◽  
pp. 1-22 ◽  
Author(s):  
Yangyang Zhang ◽  
Manoj K. Ram ◽  
Elias K. Stefanakos ◽  
D. Yogi Goswami

ZnO nanowires (or nanorods) have been widely studied due to their unique material properties and remarkable performance in electronics, optics, and photonics. Recently, photocatalytic applications of ZnO nanowires are of increased interest in environmental protection applications. This paper presents a review of the current research of ZnO nanowires (or nanorods) with special focus on photocatalysis. We have reviewed the semiconducting photocatalysts and discussed a variety of synthesis methods of ZnO nanowires and their corresponding effectiveness in photocatalysis. We have also presented the characterization of ZnO nanowires from the literature and from our own measurements. Finally, a wide range of uses of ZnO nanowires in various applications is highlighted in this paper.


2021 ◽  
Vol 903 ◽  
pp. 113-118
Author(s):  
Endija Namsone ◽  
Denis Ermakov

A mixed numerical-experimental technique based on vibration tests is modified and applied to determine the elastic material properties of woven composites. This non-destructive technique consists of physical experiments, numerical modelling and material identification procedure. For the purpose of characterization, two carbon fiber panels were prepared by manual layout technology. An evaluation of the accuracy of woven composite elastic properties is executed comparing the numerical and experimentally obtained resonant frequencies.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1831
Author(s):  
Eunyoung Cho ◽  
Loraine L. Y. Chiu ◽  
Mitchell Lee ◽  
Doshina Naila ◽  
Siddharth Sadanand ◽  
...  

Silicone rubber’s silicone-oxygen backbones give unique material properties which are applicable in various biomedical devices. Due to the diversity of potential silicone rubber compositions, the material properties can vary widely. This paper characterizes the dielectric and mechanical properties of two different silicone rubbers, each with a different cure system, and in combination with silicone additives. A tactile mutator (Slacker™) and/or silicone thickener (Thi-vex™) were mixed with platinum-cured and condensation-cured silicone rubber in various concentrations. The dielectric constants, conductivities, and compressive and shear moduli were measured for each sample. Our study contributes novel information about the dielectric and mechanical properties of these two types of silicone rubber and how they change with the addition of two common silicone additives.


Sign in / Sign up

Export Citation Format

Share Document