scholarly journals Removal of Heavy Metal Ions from One- and Two-Component Solutions via Adsorption on N-Doped Activated Carbon

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7045
Author(s):  
Justyna Kazmierczak-Razna ◽  
Anetta Zioła-Frankowska ◽  
Piotr Nowicki ◽  
Marcin Frankowski ◽  
Robert Wolski ◽  
...  

This paper deals with the adsorption of heavy metal ions (Cu2+ and Zn2+) on the carbonaceous materials obtained by chemical activation and ammoxidation of Polish brown coal. The effects of phase contact time, initial metal ion concentration, solution pH, and temperature, as well as the presence of competitive ions in solution, on the adsorption capacity of activated carbons were examined. It has been shown that the sample modified by introduction of nitrogen functional groups into carbon structure exhibits a greater ability to uptake heavy metals than unmodified activated carbon. It has also been found that the adsorption capacity increases with the increasing initial concentration of the solution and the phase contact time. The maximum adsorption was found at pH = 8.0 for Cu(II) and pH = 6.0 for Zn(II). For all samples, better fit to the experimental data was obtained with a Langmuir isotherm than a Freundlich one. A better fit of the kinetic data was achieved using the pseudo-second order model.

2012 ◽  
Vol 549 ◽  
pp. 703-706
Author(s):  
De Yi Zhang ◽  
Jing Wu ◽  
Bai Yi Chen ◽  
He Ming Luo ◽  
Kun Jie Wang ◽  
...  

In this paper, a novel carbon/bentonite composite was prepared using sucrose as carbon source and bentonite as raw material. The characterization results shown that plenty of carbon particles distribute on the surface of the composite, and an abundant of functional groups, such as SO3H, carboxylic and hydroxyl groups, were successfully introduced onto the surface of the prepared composite. The adsorption capacity of the prepared composite for typical heavy metal ions and methylene blue deys also was investigated and compared with activated carbon and bentonite, the results show that the composite shows excellent adsorprion performance for heavy metal ions, and the adsorption capacity for Cu2+and Ni2+ increase by 136% and 591% than natural bentonite, respectSuperscript textively. The prepared composite with excellent adsorption performance could be used as a low-cost alternative to activated carbon for the treatment of heavy metal ions polluted wastewater.


Author(s):  
Muhammad Irfan ◽  
Amir Shafeeq ◽  
Tahir Saleem Nasir ◽  
Farzana Bashir ◽  
Tausif Ahmad ◽  
...  

Removal of heavy metal ions (HMI) from water streams is desirable due to their toxic and carcinogenic effects. Therefore, this study was conducted to prepare a low cost adsorbent in the form of non-activated carbon (NAC) and activated carbon (AC) using rice husk, a local bio-waste material. Activation of material was performed by base leaching, chemical activation using ZnCl2, followed by acid washing. The initial and final concentrations of HMI in water were measured using Atomic Absorption Spectroscopy. Volatile matter, ash, moisture and surface area of the prepared material were measured using ASTM methods E 897- 88 R04, E 830 - 87 R04, E 949 - 88 R04 and D 1050 - 1 respectively. An enhancement factor was used to evaluate the activating effect of the adsorbent. Maximum % age removal of HMI was measured as 69.0, 64.0, 62.0 and 56% for Ni, Cd, Zn and Pb respectively using NAC. However, by using AC, a significant increase in the %age removal efficiency of HMI was observed and measured as 99.0, 95.5, 93.0 and 89% for Ni, Cd, Zn and Pb respectively. The results showed that AC derived from waste biomass is a simple, ecological and cost-effective approach to remove bulk of metal ions from water and wastewater.  


2019 ◽  
Vol 9 (1) ◽  
pp. 9-17
Author(s):  
Batseba Taihuttu ◽  
V Kayadoe ◽  
A Mariwy

Adsorption study of the adsorption of heavy metal ions from Fe (III) using sago dregs waste was carried out. adsorption was carried out in batches, with the mass of adsorbent is 1 g and the concentration of Fe (III) ion is 10 ppm. in this study variations in contact time were 60, 90, 120, 150 and 180 minutes to determine the kinetic suitable for the adsorption process of ion Fe (III) and the capacity and efficiency of sago dregs adsorption. The results showed that the adsorption of ion fe (III) using sago dregs followed pseudo second-order kinetics with R2 values that were closer to 1 that is 0,9651. adsorption of ion Fe (III) at optimum contact time of 90 minutes with adsorbent mass of 1 g obtained by adsorption capacity 0,3211 mg/g and the adsorption efficiency is 64,2%.


Author(s):  
Guoqiao Wang ◽  
Sicong Yao ◽  
Yao Chen ◽  
Meicheng Wang ◽  
Lizhi He

: Activated carbons were prepared from sewage sludge by chemical activation with pyrolusite (PAC) and lithium-silicon powder addition (LSAC) to develop effective adsorbents for the removal of Cu(II), Pb(II), Cd(II) and Cr(III) metal ions from aqueous solution. Both modifiers with optimum dosage 1% (wt.) were demonstrated to exhibit important effects on the formation of adsorbent’s pore structure. PAC and LSAC showed 17.06% and 8.38% higher BET surface area than the common one without modification (AC). The XPS result showed that after modification, the hydroxyl and carboxyl groups on modified activated carbons surface were remarkably improved comparing with the ordinary carbon. The adsorption results in single ion solution showed that the metal ions’ removal rates were 13~29% and 20~43% increment, respectively, by LSAC and PAC comparing with AC’s. Adsorption isotherm and kinetics studies showed that adsorption of heavy metal ions onto the modified adsorbents was well fitted by the Langmuir isotherm and could be described by the pseudo-second-order kinetic model. In a multi-ions solution system, the produced carbons showed high affinity and good selective adsorptive capacity on Cu (II), Pb (II) removal, while an improvement adsorption towards Cd(II) and Cr(III) were observed. It will help a lot in wastewater industries due to its efficiency and low-price.


2011 ◽  
Vol 194-196 ◽  
pp. 1652-1655 ◽  
Author(s):  
De Yi Zhang ◽  
Ying Ma ◽  
Yi Wang ◽  
Hui Xia Feng ◽  
Jiao Chen ◽  
...  

In this paper, a novel sulfonic acid-functionalized carbon/loess composite was prepared using sucrose as carbon source and loess as raw material. The characterization results shown that plenty of carbon particles distribute on the surface of the composite, and an abundant of SO3H groups were successfully introduced onto the surface of the prepared composite through incomplete carbonization of sucrose and sulfonation of carbon particles. The adsorption capacity of the prepared composite for typical heavy metal ions also was investigated and compared with activated carbon, the results show that the composite shows excellent adsorprion performance, and the adsorption capacity for Fe3+, Pb2+, Cu2+, Cd2+, Ni2+can reach about 412%, 249%, 153%, 134% and 120% of the capacity of activated carbon, respectively. The prepared composite with excellent adsorption performance could be used as a low-cost alternative to activated carbon for the removal of heavy metal ions from wastewater.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4066
Author(s):  
Xianyuan Fan ◽  
Hong Liu ◽  
Emmanuella Anang ◽  
Dajun Ren

The adsorption capacity of synthetic NaX zeolite for Pb2+, Cd2+, Cu2+ and Zn2+ in single and multi-component systems were investigated. The effects of electronegativity and hydration energy on the selective adsorption, as well as potential selective adsorption mechanism of the NaX zeolite for Pb2+, Cd2+, Cu2+ and Zn2+ were also discussed. The maximum adsorption capacity order of the heavy metals in the single system was Pb2+ > Cd2+ > Cu2+ > Zn2+, and this could be related to their hydration energy and electronegativity. The values of the separation factors (α) and affinity constant (KEL) in different binary systems indicated that Pb2+ was preferentially adsorbed, and Zn2+ presented the lowest affinity for NaX zeolite. The selective adsorption capacities of the metals were in the order, Pb2+ > Cd2+ ≈ Cu2+ > Zn2+. The trend for the selective adsorption of NaX zeolite in ternary and quaternary systems was consistent with that in the binary systems. Pb2+ and Cu2+ reduced the stability of the Si-O-Al bonds and the double six-membered rings in the NaX framework, due to the high electronegativity of Pb2+ and Cu2+ than that of Al3+. The selective adsorption mechanism of NaX zeolite for the high electronegative metal ions could mainly result from the negatively charged O in the Si-O-Al structure of the NaX zeolite, hence heavy metal ions with high electronegativity display a strong affinity for the electron cloud of the oxygen atoms in the Si-O-Al. This study could evaluate the application and efficiency of zeolite in separating and recovering certain metal ions from industrial wastewater.


Sign in / Sign up

Export Citation Format

Share Document