scholarly journals Application of Modern Research Methods for the Physicochemical Characterization of Ion Exchangers

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7067
Author(s):  
Yi-Gong Chen ◽  
Weronika Sofińska-Chmiel ◽  
Gui-Yuan Lv ◽  
Dorota Kołodyńska ◽  
Su-Hong Chen

Ion exchange technique as the reversible exchange of ions between the substrate and the surrounding medium can be an effective way of removing traces of ion impurities from the waters and wastewaters and obtaining a product of ultrapure quality. Therefore, it can be used in analytical chemistry, hydrometallurgy, purification and separation of metal ions, radioisotopes and organic compounds, and it also finds great application in water treatment and pollution control. In the presented paper, the new trends for ion exchanger characteristics determination and application are presented. Special attention is paid to the ion exchangers with multifunctionality for heavy metal ions removal. They show superior actions such as sorption capacity values with excellent resistance to fouling and the possibility of application in the co-current or modern packed bed counter-current systems, as well as for the condensate polishing or the conventional mixed bed systems in combination with other resins. The results of the paper are expected to help researchers to establish a powerful strategy to find a suitable ion exchanger for heavy metal ions removal from waters and wastewaters. It is important because the best ion exchangers are selected for a specific application during laboratory tests taking into account the composition of the feed solution, pH, type of ion exchangers and then the column breakthrough tests. Therefore, the optical profilometry and the X-ray photoelectron spectroscopy can prove beneficial for this purpose in the case of three different ion exchangers such as Dowex M 4195, Amberlite IRA 743 and Purolite Arsen Xnp.

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Shengtao Hei ◽  
Yan Jin ◽  
Fumin Zhang

Porousγ-Fe2O3nanoparticles were prepared via a solid-state conversion process of a mesoporous iron(III) carboxylate crystal, MIL-100(Fe). First, the MIL-100(Fe) crystal that served as the template of the metal oxide was synthesized by a low-temperature (<100°C) synthesis route. Subsequently, the porousγ-Fe2O3nanoparticles were fabricated by facile thermolysis of the MIL-100(Fe) powders via a two-step calcination treatment. The obtainedγ-Fe2O3was characterized by X-ray diffraction (XRD), N2adsorption, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) techniques, and then used as an adsorbent for heavy metal ions removal in water treatment. This study illustrates that the metal-organic frameworks may be suitable precursors for the fabrication of metal oxides nanomaterials with large specific surface area, and the prepared porousγ-Fe2O3exhibits a superior adsorption performance for As(V) and As(III) ions removal in water treatment.


2021 ◽  
pp. 125408
Author(s):  
Yanchen Zhu ◽  
Xin Wang ◽  
Zilong Li ◽  
Yunxiang Fan ◽  
Xujing Zhang ◽  
...  

2019 ◽  
Vol 206 ◽  
pp. 837-843 ◽  
Author(s):  
Jian Wang ◽  
Min Liu ◽  
Chao Duan ◽  
Jianpeng Sun ◽  
Yaowei Xu

2021 ◽  
Author(s):  
Rongrong Si ◽  
Daiqi Wang ◽  
Yehong Chen ◽  
Dongmei Yu ◽  
Qijun Ding ◽  
...  

Abstract Heavy metal ion pollutions are of serious threat for our human health, and advanced technologies on removal of heavy metal ions in water or soil are in the focus of intensive research worldwide. Nanocellulose based adsorbents are emerging as an environmentally friendly appealing materials platform for heavy metal ions removal as nanocellulose has higher specific surface area, excellent mechanical properties and good biocompatibility. In this review, we briefly compare the differences of three kinds of nanocellulose and their preparation method. Then we cover the most recent work on nanocellulose based adsorbents for heavy metal ions removal, and present an in-depth discussion of the modification technologies for nanocellulose in assembling high performance heavy ions adsorbent process. By introducing functional groups, such as amino, carboxyl, phenolic hydroxyl, and thiol, the nanocellulose based adsorbents not only remove single heavy metal ions through ion exchange, chelation/complexation/coordination, electrostatic attraction, hydrophobic actions, binding affinity and redox reactions, but also can selectively adsorb multiple heavy ions in water. Finally, some challenges of nanocellulose based adsorbents for heavy metal ions are also prospected. We anticipate that the review supplies some guides for nanocellulose based adsorbents applied in heavy metal ions removal field.


2021 ◽  
Vol 2 (2) ◽  
pp. 84-92
Author(s):  
S N Ndung’u ◽  
E W Nthiga ◽  
R N Wanjau

Water is essential for every life processes. However, its quality is deteriorating every day due to the recent industrial advancements. Anthropogenic processes such as industrialization, mining and agricultural activities have led to alarming discharge of heavy metal ions to the aquatic bodies. This possess a greater threat to human, animal and the entire ecosystem wellbeing. Accumulation of heavy metal ions in drinking water beyond permissible limits is detrimental to human health. Therefore, their removal is paramount. Conventional remediation techniques have been employed but have remained expensive and not universally appropriate. This has therefore spurred research interests in the use of adsorption techniques from locally available materials as an environmentally sustainable alternative. Jackfruit seeds are discarded as wastes of a Jackfruit and can be utilized as an ion exchange resin in heavy metal ions removal from wastewater. The present study involved application of previously prepared raw and modified Jackfruit seed resins to study thermodynamics of copper (II), lead (II) and cadmium (II) ions adsorption from synthetic water. FTIR results showed presence of functional groups in raw and modified resins as important sites for studying thermodynamics of adsorption of copper (II), lead (II) and cadmium (II) ions. Thermodynamic data showed that standard Gibb’s free energy () values for all metals were negative indicating that adsorption process was feasible and favourable. Standard enthalpy change (), standard entropy () and activation energy () were positive (> 40 kJ mol-1) and in the order lead (II) > copper (II) > cadmium (II). This confirmed adsorption of copper (II), lead (II) and cadmium (II) ions onto both raw and modified resins was predominated by chemical interactions between the metal ions and the resin active sites. This was confirmed by very low values of sticking probability (S*). The findings indicated that ion exchange Jackfruit seeds resin is promising for heavy metal ions removal from wastewater in an optimized temperature controlled system.


Sign in / Sign up

Export Citation Format

Share Document