scholarly journals Hardness–Deformation Energy Relationship in Metals and Alloys: A Comparative Evaluation Based on Nanoindentation Testing and Thermodynamic Consideration

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7217
Author(s):  
Masayuki Yamamoto ◽  
Masaki Tanaka ◽  
Osamu Furukimi

Nanoindentation testing using a Berkovich indenter was conducted to explore the relationships among indentation hardness (H), elastic work energy (We), plastic work energy (Wp), and total energy (Wt = We + Wp) for deformation among a wide range of pure metal and alloy samples with different hardness, including iron, steel, austenitic stainless steel (H ≈ 2600–9000 MPa), high purity copper, single-crystal tungsten, and 55Ni–45Ti (mass%) alloy. Similar to previous studies, We/Wt and Wp/Wt showed positive and negative linear relationships with elastic strain resistance (H/Er), respectively, where Er is the reduced Young’s modulus obtained by using the nanoindentation. It is typically considered that Wp has no relationship with We; however, we found that Wp/We correlated well with H/Er for all the studied materials. With increasing H/Er, the curve converged toward Wp/We = 1, because the Gibbs free energy should not become negative when indents remain after the indentation. Moreover, H/Er must be less than or equal to 0.08. Thermodynamic analyses emphasized the physical meaning of hardness obtained by nanoindentation; that is, when Er is identical, harder materials show smaller values of Wp/We than those of softer ones during nanoindentation under the same applied load. This fundamental knowledge will be useful for identifying and developing metallic materials with an adequate balance of elastic and plastic energies depending on the application (such as construction or medical equipment).

Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 110
Author(s):  
Mir Saman Safavi ◽  
Frank C. Walsh ◽  
Maria A. Surmeneva ◽  
Roman A. Surmenev ◽  
Jafar Khalil-Allafi

Hydroxyapatite has become an important coating material for bioimplants, following the introduction of synthetic HAp in the 1950s. The HAp coatings require controlled surface roughness/porosity, adequate corrosion resistance and need to show favorable tribological behavior. The deposition rate must be sufficiently fast and the coating technique needs to be applied at different scales on substrates having a diverse structure, composition, size, and shape. A detailed overview of dry and wet coating methods is given. The benefits of electrodeposition include controlled thickness and morphology, ability to coat a wide range of component size/shape and ease of industrial processing. Pulsed current and potential techniques have provided denser and more uniform coatings on different metallic materials/implants. The mechanism of HAp electrodeposition is considered and the effect of operational variables on deposit properties is highlighted. The most recent progress in the field is critically reviewed. Developments in mineral substituted and included particle, composite HAp coatings, including those reinforced by metallic, ceramic and polymeric particles; carbon nanotubes, modified graphenes, chitosan, and heparin, are considered in detail. Technical challenges which deserve further research are identified and a forward look in the field of the electrodeposited HAp coatings is taken.


2007 ◽  
Vol 558-559 ◽  
pp. 1283-1294 ◽  
Author(s):  
Cheng Xu ◽  
Z. Horita ◽  
Terence G. Langdon

It is now well-established that processing through the application of severe plastic deformation (SPD) leads to a significant reduction in the grain size of a wide range of metallic materials. This paper examines the fabrication of ultrafine-grained materials using high-pressure torsion (HPT) where this process is attractive because it leads to exceptional grain refinement with grain sizes that often lie in the nanometer or submicrometer ranges. Two aspects of HPT are examined. First, processing by HPT is usually confined to samples in the form of very thin disks but recent experiments demonstrate the potential for extending HPT also to bulk samples. Second, since the strains imposed in HPT vary with the distance from the center of the disk, it is important to examine the development of inhomogeneities in disk samples processed by HPT.


1992 ◽  
Vol 6 (1) ◽  
pp. 32-37 ◽  
Author(s):  
Linda C. Lucas ◽  
Jack E. Lemons

Metallic materials utilized for the construction of intra-oral and implant dental restorations include a wide range of relatively pure metals and multicomponent alloys. Basic corrosion and biodegradation properties of these alloys have been studied by both in vitro and in vivo techniques. These property characteristics have been shown to be dependent on composition and metallurgical state, combinations within a construct, surface conditions, mechanical aspects of function, and the local and systemic host environment. The susceptibility of these metallic materials to various forms of biodegradation will be presented, with emphasis on corrosion.


2021 ◽  
Vol 23 (2) ◽  
pp. 6-16
Author(s):  
Sergey Bratan ◽  
◽  
Stanislav Roshchupkin ◽  
Alexander Kharchenko ◽  
Anastasia Chasovitina ◽  
...  

Introduction. The final quality of products is formed during finishing operations, which include the grinding process. It is known that when grinding brittle materials, the cost of grinding work increases significantly. It is possible to reduce the scatter of product quality indicators when grinding brittle materials, as well as to increase the reliability and efficiency of the operation, by choosing the optimal parameters of the technological system based on dynamic models of the process. However, to describe the regularities of the removal of particles of a brittle non-metallic material and the wear of the surface of the grinding wheel in the contact zone, the known models do not allow taking into account the peculiarities of the process in which micro-cutting and brittle chipping of the material are combined. Purpose of the work: to create a new probabilistic model for removing the surface layer when grinding brittle non-metallic materials. The task is to study the laws governing the removal of particles of brittle non-metallic material in the contact zone. In this work, the removal of material in the contact zone as a result of microcutting and brittle chipping is considered as a random event. The research methods are mathematical and physical simulation using the basic provisions of the theory of probability, the laws of distribution of random variables, as well as the theory of cutting and the theory of a deformable solid. Results and discussion. The developed mathematical models make it possible to trace the effect on material removal of the overlap of single cuts on each other when grinding holes in ceramic materials. The proposed dependences show the regularity of stock removal within the arc of contact of the grinding wheel with the workpiece. The considered features of the change in the probability of material removal upon contact of the treated surface with an abrasive tool and the proposed analytical dependences are valid for a wide range of grinding modes, wheel characteristics and a number of other technological factors. The obtained expressions make it possible to find the amount of material removal also for schemes of end, flat and circular external grinding, for which it is necessary to know the amount of removal increment due to brittle fracture during the development of microcracks in the surface layer. One of the ways to determine the magnitude of this increment is to simulate the crack formation process using a computer. The presented results confirm the prospects of the developed approach to simulate the processes of mechanical processing of brittle non-metallic materials.


2013 ◽  
Vol 652-654 ◽  
pp. 1904-1907 ◽  
Author(s):  
Suo Xia Hou ◽  
Hui Gao ◽  
Xiao Ming Jia

WS2has excellent tribological properties; it is emerging of lubricating materials. MoS2is commonly used solid lubricants and wide range of applications, but its poor heat resistance. WS2can well make up for the inadequate performance of the MoS2, but uses it as a solid lubricant in performance research on metallic materials. By friction and wear testing, the paper gets feasibility analysis of the application that WS2instead of MoS2in the field of solid lubrication, while exploring the synergies between them, laying the foundations for the manufacture of new types of composite lubrication coatings.


Author(s):  
Yumin Xiao ◽  
R. S. Amano ◽  
E. K. Lee ◽  
Youn-Suk Choi ◽  
Jianhui Xie

In this paper a non-source term method is developed to solve the energy equation. In this new method the discrete form of the energy equation remains the same and no extra source term is introduced. The mushy-zone is treated as a porous media during solidification. This method is incorporated into the existing finite volume based CFD code. Test cases analyzed in this paper include solidification of pure metal, pure metal solidification with natural convection due to the buoyancy, and binary alloy mushy flow problem with variable Cp. The calculated results are in good agreements with available published data. This method can be applied to simulate a wide range of melting/solidification processes.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1756
Author(s):  
Shinpei Ogawa ◽  
Masafumi Kimata

Plasmonics and metamaterials are growing fields that consistently produce new technologies for controlling electromagnetic waves. Many important advances in both fundamental knowledge and practical applications have been achieved in conjunction with a wide range of materials, structures and wavelengths, from the ultraviolet to the microwave regions of the spectrum. In addition to this remarkable progress across many different fields, much of this research shares many of the same underlying principles, and so significant synergy is expected. This Special Issue introduces the recent advances in plasmonics and metamaterials and discusses various applications, while addressing a wide range of topics in order to explore the new horizons emerging for such research.


Sign in / Sign up

Export Citation Format

Share Document