scholarly journals Special Issue: New Horizon of Plasmonics and Metamaterials

Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1756
Author(s):  
Shinpei Ogawa ◽  
Masafumi Kimata

Plasmonics and metamaterials are growing fields that consistently produce new technologies for controlling electromagnetic waves. Many important advances in both fundamental knowledge and practical applications have been achieved in conjunction with a wide range of materials, structures and wavelengths, from the ultraviolet to the microwave regions of the spectrum. In addition to this remarkable progress across many different fields, much of this research shares many of the same underlying principles, and so significant synergy is expected. This Special Issue introduces the recent advances in plasmonics and metamaterials and discusses various applications, while addressing a wide range of topics in order to explore the new horizons emerging for such research.

2014 ◽  
Vol 26 (4) ◽  
pp. 435-435
Author(s):  
Koichi Osuka

As a disaster-prone country, Japan has endured many earthquake disasters. The latest cases include the 1995 Great Hanshin-Awaji earthquake disaster, the 2004 Niigata Chuetsu earthquake, and the 2011 Great East Japan earthquake. Since the 1995 Great Hanshin-Awaji earthquake in particular, many robot researchers have started undertaking the research and development of rescue robots. Their practical applications have a long way to go, so to continue ongoing robot research and development, we should also be aware that comparatively few researchers and engineers are actually engaged in such research and development. Great earthquakes (or tsunami) are both rare and unpredictable, which makes it very difficult to establish research policies for rescue robots intended for specialized use in disaster response. We should also realize that Japan is almost constantly hit by one or another every year – e.g., the typhoons that hit Japan directly every year and themselves triggering other disasters caused by landslides or avalanches due to heavy rainfall. The Japanese populace is so accustomed to such happenings but, nevertheless, few actions have been taken unlike those against large-scale earthquakes. It is often said that an effective disaster response system can only be developed after we have experienced many actual disasters. It then occurs to us that we must first construct disaster response systems – rescue robots, etc. – directly targeting daily natural disasters. Any large-scale disaster response system can be built on such constant efforts. On the other hand, any disaster response system against daily natural disasters could only be developed by locally domiciled researchers and engineers. This makes us feel that it is possible to increase the number of personnel who become involved in disaster response research and development. Based on the above context, this special issue provides a wide range of articles on region-specific disasters and disaster response actions, focusing on their localities and specialties. We sincerely hope that this special issue will help in promoting research and development on rescue robots and putting them to practical use.


2021 ◽  
Author(s):  
Muhammad Aamir Iqbal ◽  
Naila Ashraf ◽  
Wajeehah Shahid ◽  
Muhammad Awais ◽  
Abdullah Khan Durrani ◽  
...  

Nanophotonics encompasses a wide range of nontrivial physical effects including light-matter interactions that are well beyond diffraction limits, and have opened up new avenues for a variety of applications in light harvesting, sensing, luminescence, optical switching, and media transmitting technologies. Recently, growing expertise of fusing nanotechnology and photonics has become fundamental, arising outskirts, challenging basic experimentation and opportunities for new technologies in our daily lives, and played a central role in many optical systems. It entails the theoretical study of photon’s interactions with matter at incredibly small scales, known as nanostructures, in order to prepare nanometer scale devices and accessories for processing, development, slowing down, influencing, and/or regulating photons through comprehending their behavior while interacting with or otherwise traveling via matter. This multidisciplinary field has also made an impact on industry, allowing researchers to explore new horizons in design, applied science, physical science, chemistry, materials science, and biomedical technologies. The foundations, nano-confinements, quantum manifestations, nanoscale interactions, numerical methods, and peculiarities of nonlinear optical phenomena in nano-photonics as well as projected nano-photonics consumption’s in our cutting-edge world, will be covered in this chapter.


T-Comm ◽  
2020 ◽  
Vol 14 (8) ◽  
pp. 26-32
Author(s):  
Dmitry B. Demin ◽  
◽  
Andrey I. Kleev ◽  
Alexander G. Kyurkchyan ◽  
◽  
...  

Scattering of electromagnetic waves by small particles is an important key task of diffraction theory. This is due to a wide range of practical applications of the effects associated with the scattering of electromagnetic waves by particles, small in com-parison with the wavelength. From the moment of the appearance of the first papers devoted to this subject and up to the present, the most used mathematical model used in solving the problem of scattering by small bodies is the dipole approximation (Rayleigh approximation). This approach is described in sufficient detail for particular cases of scattering by balls and ellipsoids, when the solution of the auxiliary electrostatic problem can be obtained in explicit form. Note that the solution of the problem in the electrostatic approximation in the general case, in itself, is quite complicated and time-consuming compared with the solution of the original wave problem. Existing methods for solving it have a number of fundamental limitations. In this paper, we developed a technique based on the use of the method of Pattern Equations Method (PEM), first proposed in 1992. In a significant number of publications, it has been clearly demonstrated that PEM have important advantages over many alternative methods and are very effective in solving a wide class of problems. In constructing a new approach to the analysis of scattering by small bodies, we used the high convergence rate of the PEM established in our previous papers. Indeed, as shown in previous works of the authors of this article, to solve the problem of scattering by impedance bodies, whose characteristic size is comparable with the wavelength of the incident field, it suffices to take into account, depending on the polarization of the incident field, one to three terms in the Fourier decomposition of the scattering pattern. This circumstance made it possible to obtain explicit formulas for the integral scattering characteristics applicable to complex-shaped impedance scatterers. In this work, explicit formulas are obtained for the integrated scattering characteristics that are applicable to small, compared with the incident radiation wavelength, scatterers. A review is given of the application of an approximate methodology for calculating the integral scattering characteristics of small diffusers of arbitrary shape, in particular, thin dielectric cylinders, based on the use of PEM. As the above results show, the approximate relations obtained have sufficient accuracy in a wide range of problem parameters.


Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3498 ◽  
Author(s):  
Giovanni Battista Chirico ◽  
Francesco Bonavolontà

This Special Issue is focused on recent advances in integrated monitoring and modelling technologies for agriculture and forestry. The selected contributions cover a wide range of topics, including wireless field sensing systems, satellite and UAV remote sensing, ICT and IoT applications for smart farming.


Author(s):  
Péter Baranyi ◽  
Hideki Hashimoto ◽  
Gyula Sallai

Cognitive infocommunications (CogInfoCom), is an emerging interdisciplinary research field that has recently started to appear in the context of theoretical, R&D, and industryoriented projects. CogInfoCom deals with novel approaches to extend the cognitive capabilities of human users through the artificial cognitive capabilities of infocommunications devices, enabling them to interact more flexibly with IT infrastructure. Two key points must be considered when asking why the emergence of CogInfoCom is not only timely but also necessary. First of all, the infocommunications industry is experiencing trends that are resulting in the gradual appearance of artificial cognitive capabilities ? capabilities directed towards a broadened scope covering the sensing and processing of unstructured data. Secondly, future users of infocommunications devices will expect both to be able to access these artificial cognitive capabilities in their everyday activities and to be able to merge them with their own cognitive capabilities. They will thus be able to apply them flexibly ? through their infocommunications devices ? in a wide range of applications in both physical and virtual contexts. This Special Issue on Cognitive Infocommunications contains extended versions of key ideas presented at CogInfoCom conferences. The table of contents alone will demonstrate to the reader the broad scope of theoretical considerations and practical applications that underlie current and emerging CogInfoCom research. It is our hope that this Special Issue ? along with the CogInfoCom conference series ? will contribute to providing a scientific forum for researchers from areas related to CogInfoCom and beyond, so that they may be able to develop stronger cooperation and create a more common language in order to produce useful synergies, and in order to fully meet the interdisciplinary challenges that underlie CogInfoCom.


Nanomaterials ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 871 ◽  
Author(s):  
Zhenhe Ma ◽  
Xianghe Meng ◽  
Xiaodi Liu ◽  
Guangyuan Si ◽  
Yan Jun Liu

Inspired by the anisotropic molecular shape and tunable alignment of liquid crystals (LCs), investigations on hybrid nanodevices which combine LCs with plasmonic metasurfaces have received great attention recently. Since LCs possess unique electro-optical properties, developing novel dynamic optical components by incorporating nematic LCs with nanostructures offers a variety of practical applications. Owing to the large birefringence of LCs, the optical properties of metamaterials can be electrically or optically modulated over a wide range. In this review article, we show different elegant designs of metasurface based nanodevices integrated into LCs and explore the tuning factors of transmittance/extinction/scattering spectra. Moreover, we review and classify substantial tunable devices enabled by LC-plasmonic interactions. These dynamically tunable optoelectronic nanodevices and components are of extreme importance, since they can enable a significant range of applications, including ultra-fast switching, modulating, sensing, imaging, and waveguiding. By integrating LCs with two dimensional metasurfaces, one can manipulate electromagnetic waves at the nanoscale with dramatically reduced sizes. Owing to their special electro-optical properties, recent efforts have demonstrated that more accurate manipulation of LC-displays can be engineered by precisely controlling the alignment of LCs inside small channels. In particular, device performance can be significantly improved by optimizing geometries and the surrounding environmental parameters.


2008 ◽  
Vol 1072 ◽  
Author(s):  
Andrea Leonardo Lacaita ◽  
Ugo Russo ◽  
Daniele Ielmini

ABSTRACTAs non-volatile memory technology is approaching the 45nm generation node and in view of severe scaling limitations of conventional Flash, phase-change memory (PCM) is gaining momentum as a reference emerging memory. The high applicative interest in this new technologies asks not only for progress in the integration issues of the new storage concept, but, most importantly, for a significant improvement of the physical understanding of programming, reliability mechanisms and scalability of the new technology. This can only be possible by a detail study of microscopic processes in the chalcogenide material covering a wide range of physics, from electron transport in disordered media to self-heating effects, from solid-state nucleation and growth processes at the nanoscale.The presentation will review the most recent advances in the understanding and modeling of the programming and reliability mechanisms in chalcogenide-based PCM devices. Electro-thermal simulations of the programming behavior allows to understand the impact of cell geometry and active/electrode materials on the programming current, and to benchmark different scaling rules for future technology nodes. Cell reliability will be discussed with emphasis on the spontaneous crystallization kinetics in the amorphous chalcogenide material, on the acceleration laws to predict retention time at low temperature, and on the possible scaling limitations due to fast phase transition in amorphous chalcogenide nanoclusters/nanowires. An analytical model for nucleation and growth in the amorphous phase will be shown, allowing to draw guidelines for material engineering and reliability improvement. Other scaling-related reliability issues, such as statistical spread of crystallization times and structural relaxation of the amorphous phase, will be discussed.


2018 ◽  
Vol 28 ◽  
Author(s):  
Gabriele Keller ◽  
Fritz Henglein

Functional languages are uniquely suited to providing programmers with a programming model for parallel and concurrent computing. This is reflected in the wide range of work that is currently underway, both on parallel and concurrent functional languages, as well as on bringing functional language features to other programming languages. This has resulted in a rapidly growing number of practical applications. The Journal of Functional Programming decided to dedicate a special issue to this field to showcase the state of the art in how functional languages and functional concepts currently assist programmers with the task of managing the challenges of creating parallel and concurrent systems.


2021 ◽  
Vol 13 (21) ◽  
pp. 4260
Author(s):  
Nishan Bhattarai ◽  
Pradeep Wagle

Evapotranspiration (ET) plays an important role in coupling the global energy, water, and biogeochemical cycles and explains ecosystem responses to global environmental change. However, quantifying and mapping the spatiotemporal distribution of ET across a large area is still a challenge, which limits our understanding of how a given ecosystem functions under a changing climate. This also poses a challenge to water managers, farmers, and ranchers who often rely on accurate estimates of ET to make important irrigation and management decisions. Over the last three decades, remote sensing-based ET modeling tools have played a significant role in managing water resources and understanding land-atmosphere interactions. However, several challenges, including limited applicability under all conditions, scarcity of calibration and validation datasets, and spectral and spatiotemporal constraints of available satellite sensors, exist in the current state-of-the-art remote sensing-based ET models and products. The special issue on “Remote Sensing of Evapotranspiration II” was launched to attract studies focusing on recent advances in remote sensing-based ET models to help address some of these challenges and find novel ways of applying and/or integrating remotely sensed ET products with other datasets to answer key questions related to water and environmental sustainability. The 13 articles published in this special issue cover a wide range of topics ranging from field- to global-scale analysis, individual model to multi-model evaluation, single sensor to multi-sensor fusion, and highlight recent advances and applications of remote sensing-based ET modeling tools and products.


2020 ◽  
Vol 14 (5) ◽  
pp. 677-677
Author(s):  
Toshiya Kaihara ◽  
Nariaki Nishino

With the recent development of new technologies such as the Internet of Things (IoT), Cyber-Physical Systems (CPS), and cloud-based systems, the smart manufacturing concept based on ICT or AI is expected to have tremendous potential to realize a digital transformation with customer involvement in production. The role of production will need to change accordingly, as it is obvious that the traditional business model based on process chains for production functionality has limitations for further growth. In production, it is necessary to consider value chains with service factors for adding innovative value to products. Value creation is an important concept to the realization of a sustainable ecosystem in production. This special issue addresses the latest research on value creation in production and service systems. Including ten advanced research papers and one development report, it covers a wide range of topics, including smart factories, logistics, distribution with value chains; product service systems; sustainable ecosystems with value in production and service industries; the sharing economy in production systems with cloud computing; the application of digital transformations in production and service systems. All papers and reports were refereed through careful peer reviews with experts. The editors deeply appreciate the authors for their careful work and the reviewers for their invaluable efforts, without which this special issue would not have been possible. Finally, we hope this special issue provides valuable information to our interested readers and encourages further research on value creation in production.


Sign in / Sign up

Export Citation Format

Share Document