scholarly journals The Hardness Evolution of Cast and the High-Cycle Fatigue Life Change of Wrought Ni-Base Superalloys after Additional Heat Treatment

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7427
Author(s):  
Juraj Belan ◽  
Lenka Kuchariková ◽  
Eva Tillová ◽  
Miloš Matvija ◽  
Milan Uhríčik

Concerning the use of modern technologies and manufacturing systems in the production of high-stress components from Ni-base superalloys and the optimization of the production process, knowledge of the microstructure–mechanical properties relationship is very important. The microstructure of Ni-base superalloys is very closely related to the chemical composition. With the high number of alloying elements, various phases are presented in the structure of Ni-base superalloys, which have a predominantly positive effect on the mechanical properties, but also phases that reduce, in particular, the heat resistance of these materials. The aim of the presented paper is the quantification of structural parameters of two types of cast alloys, ZhS6K and IN738, where the effect of dwell at 10 and 15 h at 800 °C on the change in morphology and volume fraction of the γ′-phase precipitate was studied. The detected changes were verified by the Vickers hardness test. The IN718 superalloy was chosen as a representative of the wrought superalloy. This alloy was also annealed for 72 h at a temperature of 800 °C, and the quantification of structural parameters was performed by EDS mapping and TEM analysis. Another partial goal was to assess the effect of changes in the volume fraction of the γ′-phase and δ-phase on the change in the high-cycle fatigue life of superalloy IN 718. This superalloy was tested by dynamic cyclic loading with cycle asymmetry parameter R = −1 at an ambient temperature of 22 ± 5 °C and at a temperature of 700 ± 5 °C and with cycle asymmetry parameter R < 1 (three-point bending load) after annealing at 700 °C/72 h. The results of the quantitative analyses and fatigue tests will be further used in optimizing the design of Ni-base superalloy components by modern technologies such as additive technologies for the production of turbine blades and implemented within the philosophy of Industry 4.0.

1990 ◽  
Vol 213 ◽  
Author(s):  
W.E. Dowling ◽  
W.T. Donlon ◽  
J.E. Allison

ABSTRACTAxial load controlled high cycle fatigue experiments were conducted on the γ/α2 alloy, Ti-48A1-1V-0.2C (at%), at 23 and 815°C. Four different microstructures, produced through thermomechanical processing, were evaluated to examine the influence of grain size and α2 content on fatigue behavior. The load controlled fatigue life was significantly reduced by increasing grain size and unaffected by α2 content at both 23 and 815°C. Although, α2 content did not greatly influence high cycle fatigue life, the room temperature crack initiation and fast fracture was changed from transgranular to partially intergranular as the volume fraction of α2 was reduced in the fine grain size material. The fatigue strength at 107 cycles (FS) to ultimate tensile strength (UTS) ratio was 0.8 to 0.9 at 23°C and 0.5 to 0.6 at 815°C for all microstructures examined. Low tensile ductility, high work hardening rate and the difficulty in forming strain local-izations all aided the high FS/UTS ratio. The dislocation microstructures produced by fatigue at room temperature were examined in the fine grained high α2 (ductile) microstructure. They consisted of loop patches of all <110] regular dislocations without any <101] or <011] super dislocations because of the large difference in CRSS for these dislocation. The inability to nucleate and move superdislocations inhibited the formation of persistent slip bands as is often found in high and intermediate stacking fault FCC metals.


2015 ◽  
Vol 1099 ◽  
pp. 1-8
Author(s):  
Nikolaos D. Alexopoulos ◽  
Vangelis Migklis ◽  
Stavros K. Kourkoulis ◽  
Zaira Marioli-Riga

In the present work, an experimental study was performed to characterize and analyze the tensile and constant amplitude fatigue mechanical behavior of several aluminum alloys, namely 2024 (Al-Cu), 2198 (Al-Li) and 6156 (Al-Mg-Si). Al-Li alloy was found to be superior of 2024 in the high cycle fatigue and fatigue endurance limit regimes, especially when considering specific mechanical properties. Alloy 6156 was found to have superior constant amplitude fatigue performance that the respective 6xxx series alloys; more than 15% higher endurance limit was noticed against 6061 and almost 30% higher than 6082. Alloy 6156 presented only a marginal increase in fatigue life for the HCF regime.


2013 ◽  
Vol 275-277 ◽  
pp. 2176-2181 ◽  
Author(s):  
Hong Liang Sun ◽  
Ze Wen Huang ◽  
De Gui Zhu

The effect of isothermal forging on microstructure and mechanical properties of Ti-44Al-4Nb-4Zr-0.2Si-1B alloys were investigated by means of BSE, TEM, tensile and the high cycle fatigue test at room temperature. The results showed that the lamellar thickness and volume fraction of equiaxed γ phases and B2+ω phases decreased, the grain size and volume fraction of lamellar α2+γ colonies was raised after isothermal forging. The lamellar was bending. The tensile strength and yield strength was increased by 80MPa although the total elongation hardly changed. The fatigue limit was increased by 230MPa. The effect of boride, lamellar thickness and B2+ω phases on the mechanical properties were studied.


Author(s):  
D. Fuchs ◽  
S. Schurer ◽  
T. Tobie ◽  
K. Stahl

AbstractDemands on modern gearboxes are constantly increasing, for example to comply with lightweight design goals or new CO2 thresholds. Normally, to increase performance requires making gearboxes and powertrains more robust. However, this increases the weight of a standard gearbox. The two trends therefore seem contradictory. To satisfy both of these goals, gears in gearboxes can be shot-peened to introduce high compressive residual stresses and improve their bending fatigue strength. To determine a gear’s tooth root bending fatigue strength, experiments are conducted up to a defined number of load cycles in the high cycle fatigue range. However, investigations of shot-peened gears have revealed tooth root fracture damage initiated at non-metallic inclusions in and above the very high cycle fatigue range. This means that a further reduction in bending load carrying capacity has to be expected at higher load cycles, something which is not covered under current standard testing conditions. The question is whether there is a significant decrease in the bending load carrying capacity and, also, if pulsating tests conducted at higher load cycles—or even tests on the FZG back-to-back test rig—are necessary to determine a proper endurance fatigue limit for shot-peened gears. This paper examines these questions.


PCI Journal ◽  
2022 ◽  
Vol 67 (1) ◽  
Author(s):  
Jörn Remitz ◽  
Martin Empelmann

Pretensioned concrete beams are widely used as bridge girders for simply supported bridges. Understanding the fatigue behavior of such beams is very important for design and construction to prevent fatigue failure. The fatigue behavior of pretensioned concrete beams is mainly influenced by the fatigue of the prestressing strands. The evaluation of previous test results from the literature indicated a reduced fatigue life in the long-life region compared with current design methods and specifications. Therefore, nine additional high-cycle fatigue tests were conducted on pretensioned concrete beams with strand stress ranges of about 100 MPa (14.5 ksi). The test results confirmed that current design methods and specifications overestimate the fatigue life of embedded strands in pretensioned concrete beams.


Author(s):  
Geovana Drumond ◽  
Bianca Pinheiro ◽  
Ilson Pasqualino ◽  
Francine Roudet ◽  
Didier Chicot

The hardness of a material shows its ability to resist to microplastic deformation caused by indentation or penetration and is closely related to the plastic slip capacity of the material. Therefore, it could be significant to study the resistance to microplastic deformations based on microhardness changes on the surface, and the associated accumulation of fatigue damage. The present work is part of a research study being carried out with the aim of proposing a new method based on microstructural changes, represented by a fatigue damage indicator, to predict fatigue life of steel structures submitted to cyclic loads, before macroscopic cracking. Here, Berkovich indentation tests were carried out in the samples previously submitted to high cycle fatigue (HCF) tests. It was observed that the major changes in the microhardness values occurred at the surface of the material below 3 μm of indentation depth, and around 20% of the fatigue life of the material, proving that microcracking is a surface phenomenon. So, the results obtained for the surface of the specimen and at the beginning of the fatigue life of the material will be considered in the proposal of a new method to estimate the fatigue life of metal structures.


Sign in / Sign up

Export Citation Format

Share Document