scholarly journals Multiple Ion Scaffold-Based Delivery Platform for Potential Application in Early Stages of Bone Regeneration

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7676
Author(s):  
Èlia Bosch-Rué ◽  
Leire Díez-Tercero ◽  
Raquel Rodriguez-Gonzalez ◽  
Román A Pérez

Bone has the intrinsic capacity to regenerate itself, as long as the damage is small, through the sequential stimulation of specific phases, such as angiogenesis followed by osteogenesis. However, when the damage is extensive it is unable to regenerate and bone tissue engineering is used as an alternative. In this study, we developed a platform to allow the triple ion delivery with sequential delivery capacity to potentially stimulate antibacterial, angiogenic and osteogenic processes. The scaffold-based platform consisted of alginate/hydroxyapatite (HA) microparticles embedded in alginate fibers. Firstly, microparticles were developed using different ratios of alginate:HA using the spraying method, resulting in a high reproducibility of the technique. Microparticle size between 100–300 µm and ratio 1:40 resulted in a more spherical morphology and were selected for their incorporation into alginate fiber. Different amounts of copper and cobalt were added with the microparticles and alginate fiber, respectively, were used as model ions which could eventually modulate and mimic antimicrobial and angiogenic processes. Moreover, calcium ion was also incorporated in both, in order to provide the system with potential osteogenic properties together with HA. The multiple delivery of copper, cobalt and calcium released were in the therapeutic range as measured by induced coupled plasma (ICP), providing a promising delivery strategy for tissue engineering.

2013 ◽  
Vol 631-632 ◽  
pp. 447-451
Author(s):  
Guang Xiu Tian ◽  
Quan Ji ◽  
Feng Yu Quan ◽  
Yan Zhi Xia

Experimental research on calcium alginate fibers thermal degradation and flame retardancy under catalysis of metallic salts was done by limiting oxygen index (LOI), scanning electron microscopy (SEM), and thermogravimetric analysis (TG) methods. LOI results show that with increasing calcium ions content, the flame retardant properties of the calcium alginate fibers improves further. The residues of calcium alginate fibers gradually retained fiber shape and on the surface of the residues the holes reduced, with the calcium ion content increasing. TG indicates temperature at maximum rate of weight loss (T-max) was clearly shifted from 246 °C for alginic acid fibers to 244°C, 236°C, 208°C, 205 °C and 203°C (SCa-1-1# calcium alginate fibers, SCa-2-2# calcium alginate fibers, SCa-3-3# calcium alginate fibers, SCa-4-4# calcium alginate fibers, SCa-5-5# calcium alginate fibers), respectively. The thermal degradation residues at 1000°C for different calcium alginate fibers are 13.7%, 16.1%, 17.2%, 18.2%, 18.4%, 19.2%, separately. Further discussion of the combustion process and flame retardant mechanism is presented.


Author(s):  
Xiao Zhang ◽  
Jiabing Fan ◽  
Chen Chen ◽  
Tara Aghaloo ◽  
Min Lee

Supramolecular hydrogels are widely used as 3D scaffolds and delivery platform in tissue engineering applications. However, hydrophobic therapeutic agents exhibit weak compatibility in hydrogel scaffolds along with aggregation and precipitate....


2018 ◽  
Vol 30 (06) ◽  
pp. 1850045
Author(s):  
Maria Grazia Cascone ◽  
Elisabetta Rosellini ◽  
Simona Maltinti ◽  
Andrea Baldassare ◽  
Luigi Lazzeri

Alginate hydrogel fibers are receiving a great attention for tissue engineering applications. However, an important limitation of alginate is that it does not provide cell adhesion motifs. In this work, albumin was blended with alginate to improve the compatibility of alginate fibers with cells. Cell laden alginate/albumin fibers, potentially usable for skin regeneration, were obtained through a spinning process, by extruding an alginate/albumin solution containing cells into a calcium chloride solution. Cell laden pure alginate fibers were prepared for comparison. Plain alginate and alginate/albumin fibers were also produced. Morphological, mechanical and functional properties of the produced fibers were investigated. In addition, the ability of the fibers to release albumin and to support the viability and growth of A549 cells embedded into them was studied. Fibers with a uniform shape and an average diameter within the range 550–570[Formula: see text][Formula: see text]m were produced. The water content was [Formula: see text]% for alginate fibers, and [Formula: see text]% for alginate/albumin fibers. Stress–strain tests showed, up to a strain value of 20%, the same Young’s modulus for the produced fibers, regardless of the presence of albumin. Overall, obtained results demonstrated that morphology, size, hydrophilicity and mechanical properties were not affected by albumin. Albumin was gradually released over a period of 4 days, with a residual amount (13%) remaining into the fibers. Viability test was carried out on A549 cells, laden inside alginate and alginate/albumin fibers, to evaluate cell proliferation ability. A favorable effect of albumin on the loaded cells was evidenced by a faster kinetics of growth.


Author(s):  
Carolina Oliver Urrutia ◽  
Ma. Victoria Dominguez-García ◽  
Jaime Flores-Estrada ◽  
Antonio Laguna-Camacho ◽  
Julieta Castillo-Cadena ◽  
...  

2019 ◽  
Vol 38 (4) ◽  
pp. S246
Author(s):  
L. Melly ◽  
A. Grosso ◽  
C. Stanciu Pop ◽  
M. Nollevaux ◽  
N. Di Maggio ◽  
...  

1982 ◽  
Vol 243 (2) ◽  
pp. G134-G140
Author(s):  
W. J. Snape

The purpose of this study was to compare the effect of altering the extracellular calcium ion concentration on bethanechol or octapeptide of cholecystokinin (OP-CCK) stimulation of the isolated transverse colon of the cat. Myoelectric activity was recorded with monopolar glass-pore electrodes. Bethanechol (10(-6) M) stimulated an increase in the number of slow waves with superimposed spike potentials to 85.5 +/- 5.3% (P less than 0.001) compared with the basal spike activity (8.9 +/- 1.4%). OP-CCK (4 x 10(-9)) also increased spike activity (80.7 +/- 3.8%, P less than 0.001), which was not inhibited by atropine, phentolamine, or propranolol. Addition of 0.0 mM calcium solution to the colonic smooth muscle abolished both slow-wave and spike activity, which returned after replacing 0.25 mM calcium in the solution. Bethanechol stimulated a greater increase in spike activity as the concentration of calcium was increased. OP-CCK stimulation of colonic spike activity was more sensitive to the extracellular calcium concentration than bethanechol stimulation. Verapamil had a minimal effect on bethanechol stimulation of colonic spike activity, but it inhibited the OP-CCK stimulation. These studies suggest that 1) OP-CCK appears to stimulate colonic smooth muscle directly and 2) OP-CCK requires the presence of a greater amount of extracellular ionic calcium in order to stimulate colonic spike activity compared with bethanechol.


2020 ◽  
Vol 2 (4) ◽  
pp. 391-398
Author(s):  
Damián Hernández ◽  
Rodney Millard ◽  
Anne M. Kong ◽  
Owen Burns ◽  
Priyadharshini Sivakumaran ◽  
...  

2009 ◽  
Vol 15 (11) ◽  
pp. 3605-3619 ◽  
Author(s):  
Laleh Ghasemi-Mobarakeh ◽  
Molamma P. Prabhakaran ◽  
Mohammad Morshed ◽  
Mohammad Hossein Nasr-Esfahani ◽  
Seeram Ramakrishna

Sign in / Sign up

Export Citation Format

Share Document