scholarly journals Numerical Simulation of the Fracture Behavior of High-Performance Fiber-Reinforced Concrete by Using a Cohesive Crack-Based Inverse Analysis

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 71
Author(s):  
Alejandro Enfedaque ◽  
Marcos G. Alberti ◽  
Jaime C. Gálvez ◽  
Pedro Cabanas

Fiber-reinforced concrete (FRC) has become an alternative for structural applications due its outstanding mechanical properties. The appearance of new types of fibres and the fibre cocktails that can be configured by mixing them has created FRC that clearly exceeds the minimum mechanical properties required in the standards. Consequently, in order to take full advantage of the contribution of the fibres in construction projects, it is of interest to have constitutive models that simulate the behaviour of the materials. This study aimed to simulate the fracture behaviour of five types of FRC, three with steel fibres, one with a combination of two types of steel fibers, and one with a combination of polyolefin fibres and two types of steel fibres, by means of an inverse analysis based on the cohesive crack approach. The results of the numerical simulations defined the softening functions of each FRC formulation and have pointed out the synergies that are created through use of fibre cocktails. The information supplied can be of help to engineers in designing structures with high-performance FRC.

Author(s):  
Alejandro Enfedaque ◽  
Marcos G. Alberti ◽  
Jaime C. Gálvez ◽  
Pedro Cabanas

Fibre reinforced concrete (FRC) has become an alternative for structural applications due its outstanding mechanical properties. The appearance of new types of fibres and the fibre cocktails that can be configured mixing them has created FRC that clearly exceed the minimum mechanical properties required in the standards. Consequently, in order to take full advantage of the contribution of the fibres in construction projects, it is of great interest to have constitutive models that simulate the behaviour of the materials. This study aimed to simulate the fracture behaviour of five types of FRC, three with steel hooked fibres, one with a combination of two types of steel fibres and one with a combination of polyolefin fibres and two types of steel fibres, by means of an inverse analysis based on the cohesive crack approach. The results of the numerical simulations defined the softening functions of each FRC formulation and have pointed out the synergies that are created through use of fibre cocktails. The information obtained might suppose a remarkable advance for designers using high-performance FRC in structural elements.


Author(s):  
Ester Gimenez-Carbo ◽  
Raquel Torres ◽  
Pedro Serna

The overall objective of the work is the development of ultra high performance fiber reinforced concrete (UHPFRC) dosages that can be used for shotcrete. In this study, a number of UHPFRC mixtures with different amount of admixtures (plasticizers and accelerating) and different mixing time were tested, to increase either the rate of stiffening or setting of the concrete or the rate of hardening and early-strength development. Workability, consistency and mechanical properties of UHPFRC including compressive and flexural strengths at different ages were assessed. Results showed mixtures than begin their first setting in less than 1 minute, with very good mechanical properties in 24 hours, and without reducing the compressive strength at 28 days. From the results obtained, various uses of these mixtures are proposed taking into account, the new context of the Construction field, with the appearance of new placing concrete techniques.


2014 ◽  
Vol 982 ◽  
pp. 119-124 ◽  
Author(s):  
Tomáš Vavřiník ◽  
Jan Zatloukal

This paper describes influence of different mechanical properties to the concrete penetration resistance. The resistance is evaluated on the basis of the presented experimental program. In the experiment, non-deformable ogive-nose projectiles with diameter of 7.92 mm and mass of 8 g with impact velocity of about 700 m/s were hitting center of the specimens. Determination of the concrete penetration resistance was than based on projectile residual velocity obtained from high-speed camera record. The specimens were made from high strength concrete, steel fiber-reinforced concrete, ultra-high performance concrete and ultra-high performance fiber-reinforced concrete with different fiber content. The concrete penetration resistance was evaluated on total 32 specimens. Influence of mechanical properties, addition of coarse aggregate and steel fibers were discussed. Mechanical properties of the tested materials were investigated on total 125 specimens. Data from the measurements were used for creation of new RHT concrete models in Autodyn. In order to confirm experiment's setup and results, numerical analysis was performed in Autodyn. Results of the numerical simulations were compared to the experimental program.


Materials ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 159 ◽  
Author(s):  
Seungwon Kim ◽  
Seungyeon Han ◽  
Cheolwoo Park ◽  
Kyong-Ku Yun

The compressive stress of concrete is used as a design variable for reinforced concrete structures in design standards. However, as the performance-based design is being used with increasing varieties and strengths of concrete and reinforcement bars, mechanical properties other than the compressive stress of concrete are sometimes used as major design variables. In particular, the evaluation of the mechanical properties of concrete is crucial when using fiber-reinforced concrete. Studies of high volume fractions in established compressive behavior prediction equations are insufficient compared to studies of conventional fiber-reinforced concrete. Furthermore, existing prediction equations for the mechanical properties of high-performance fiber-reinforced cementitious composite and high-strength concrete have limitations in terms of the strength and characteristics of contained fibers (diameter, length, volume fraction) even though the stress-strain relationship is determined by these factors. Therefore, this study developed a high-performance slurry-infiltrated fiber-reinforced cementitious composite that could prevent the fiber ball phenomenon, a disadvantage of conventional fiber-reinforced concrete, and maximize the fiber volume fraction. Then, the behavior characteristics under compressive stress were analyzed for fiber volume fractions of 4%, 5%, and 6%.


Sign in / Sign up

Export Citation Format

Share Document