scholarly journals Alcohol Sensor Based on Surface Plasmon Resonance of ZnO Nanoflowers/Au Structure

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 189
Author(s):  
Haowen Xu ◽  
Yutong Song ◽  
Panpan Zhu ◽  
Wanli Zhao ◽  
Tongyu Liu ◽  
...  

Alcohol detection plays a key role in food processing and monitoring. Therefore, we present a fast, high reproducibility and label-free characteristics alcohol photochemical sensor based on the surface plasmon resonance (SPR) effect. By growing ZnO nanoflowers on Au film, the SPR signal red-shifted in the visible region as the alcohol concentration increased. More interestingly, the sensitivity improved to 127 nm/%, which is attributed to the ZnO nanoflowers/Au structure. The goodness of the linear fit was more than 0.99 at a range from 0 vol% to 95 vol% which ensures detection resolution. Finally, a practical application for distinguishing five kinds of alcoholic drinks has been demonstrated. The excellent sensing characteristics also indicate the potential of the device for applications in the direction of food processing and monitoring, and the simple structure fabrication and economic environmental protection make it more attractive.

RSC Advances ◽  
2015 ◽  
Vol 5 (31) ◽  
pp. 23990-23998 ◽  
Author(s):  
Gaoling Liang ◽  
Zhongjun Zhao ◽  
Yin Wei ◽  
Kunping Liu ◽  
Wenqian Hou ◽  
...  

A simple, label-free and cost-effective localized surface plasmon resonance (LSPR) immunosensing method was developed for detection of alpha-fetoprotein (AFP).


2021 ◽  
Vol 6 (1) ◽  
pp. 26
Author(s):  
Rahat Morad Talukder ◽  
Al Shahriar Hossain Rakib ◽  
Julija Skolnik ◽  
Zohair Usfoor ◽  
Katharina Kaufmann ◽  
...  

In a series of recently published works, we demonstrated that the plasmon-assisted microscopy of nano-objects (PAMONO) technique can be successfully employed for the sizing and quantification of single viruses, virus-like particles, microvesicles and charged non-biological particles. This approach enables label-free, but specific detection of biological nano-vesicles. Hence, the sensor, which was built up utilizing plasmon-assisted microscopy, possesses relative versatility and it can be used as a platform for cell-based assays. However, one of the challenging tasks for such a sensor was the ability to reach a homogeneous illumination of the whole surface of the gold sensor slide. Moreover, in order to enable the detection of even relatively low concentrations of nano-particles, the focused image area had to be expanded. Both tasks were solved via modifications of previously described PAMONO-sensor set ups. Taken together, our latest findings can help to develop a research and diagnostic platform based on the principles of the surface plasmon resonance (SPR)-assisted microscopy of nano-objects.


Biosensors ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 102 ◽  
Author(s):  
Richard Schasfoort ◽  
Fikri Abali ◽  
Ivan Stojanovic ◽  
Gestur Vidarsson ◽  
Leon Terstappen

SPR cytometry entails the measurement of parameters from intact cells using the surface plasmon resonance (SPR) phenomenon. Specific real-time and label-free binding of living cells to sensor surfaces has been made possible through the availability of SPR imaging (SPRi) instruments and researchers have started to explore its potential in the last decade. Here we will discuss the mechanisms of detection and additionally describe the problems and issues of mammalian cells in SPR biosensing, both from our own experience and with information from the literature. Finally, we build on the knowledge and applications that has already materialized in this field to give a forecast of some exciting applications for SPRi cytometry.


Biosensors ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 130 ◽  
Author(s):  
Georgina Ross ◽  
Maria Bremer ◽  
Jan Wichers ◽  
Aart van Amerongen ◽  
Michel Nielen

Lateral Flow Immunoassays (LFIAs) allow for rapid, low-cost, screening of many biomolecules such as food allergens. Despite being classified as rapid tests, many LFIAs take 10–20 min to complete. For a really high-speed LFIA, it is necessary to assess antibody association kinetics. By using a label-free optical technique such as Surface Plasmon Resonance (SPR), it is possible to screen crude monoclonal antibody (mAb) preparations for their association rates against a target. Herein, we describe an SPR-based method for screening and selecting crude anti-hazelnut antibodies based on their relative association rates, cross reactivity and sandwich pairing capabilities, for subsequent application in a rapid ligand binding assay. Thanks to the SPR selection process, only the fast mAb (F-50-6B12) and the slow (S-50-5H9) mAb needed purification for labelling with carbon nanoparticles to exploit high-speed LFIA prototypes. The kinetics observed in SPR were reflected in LFIA, with the test line appearing within 30 s, almost two times faster when F-50-6B12 was used, compared with S-50-5H9. Additionally, the LFIAs have demonstrated their future applicability to real life samples by detecting hazelnut in the sub-ppm range in a cookie matrix. Finally, these LFIAs not only provide a qualitative result when read visually, but also generate semi-quantitative data when exploiting freely downloadable smartphone apps.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5119 ◽  
Author(s):  
Michal Gryga ◽  
Dalibor Ciprian ◽  
Petr Hlubina

We report on a highly sensitive measurement of the relative humidity (RH) of moist air using both the surface plasmon resonance (SPR) and Bloch surface wave resonance (BSWR). Both resonances are resolved in the Kretschmann configuration when the wavelength interrogation method is utilized. The SPR is revealed for a multilayer plasmonic structure of SF10/Cr/Au, while the BSWR is resolved for a multilayer dielectric structure (MDS) comprising four bilayers of TiO2/SiO2 with a rough termination layer of TiO2. The SPR effect is manifested by a dip in the reflectance of a p-polarized wave, and a shift of the dip with the change in the RH, or equivalently with the change in the refractive index of moist air is revealed, giving a sensitivity in a range of 0.042–0.072 nm/%RH. The BSWR effect is manifested by a dip in the reflectance of the spectral interference of s- and p-polarized waves, which represents an effective approach in resolving the resonance with maximum depth. For the MDS under study, the BSWRs were resolved within two band gaps, and for moist air we obtained sensitivities of 0.021–0.038 nm/%RH and 0.046–0.065 nm/%RH, respectively. We also revealed that the SPR based RH measurement is with the figure of merit (FOM) up to 4.7 × 10−4 %RH−1, while BSWR based measurements have FOMs as high as 3.0 × 10−3 %RH−1 and 1.1 × 10−3 %RH−1, respectively. The obtained spectral interferometry based results demonstrate that the BSWR based sensor employing the available MDS has a similar sensitivity as the SPR based sensor, but outperforms it in the FOM. BSW based sensors employing dielectrics thus represent an effective alternative with a number of advantages, including better mechanical and chemical stability than metal films used in SPR sensing.


Author(s):  
Manuel Fuentes ◽  
Sanjeeva Svrivastava ◽  
Nirosahan Ramachandran ◽  
Eugenie Hainsworth ◽  
Josh LaBaer

Sign in / Sign up

Export Citation Format

Share Document