scholarly journals Fracture Resistance of Zirconia Abutments with or without a Titanium Base: An In Vitro Study for Tapered Conical Connection Implants

Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 364
Author(s):  
Shota Watanabe ◽  
Tamaki Nakano ◽  
Shinji Ono ◽  
Yasufumi Yamanishi ◽  
Takashi Matsuoka ◽  
...  

Dental implants with tapered conical connections are often combined with zirconia abutments for esthetics; however, the effect of the titanium base on the implant components remains unclear. This study evaluated the effects of a titanium base on the fracture resistance of zirconia abutments and damage to the tapered conical connection implants. Zirconia (Z) and titanium base zirconia (ZT) abutments were fastened to Nobel Biocare (NB) implants and Straumann (ST) implants and subjected to static load testing according to ISO 14801:2016. The experiments were performed with 3 mm of the platform exposed (P3) and no platform exposed (P0). The fracture loads were statistically greater in the titanium base abutments than the zirconia abutments for the NB and ST specimens in the P0 condition. In the P3 condition of the ST specimens, the deformation volume of the ZT group was significantly greater than the Z group. The titanium base increased the fracture resistance of the zirconia abutments. Additionally, the titanium base caused more deformation in the P3 condition. The implant joint design may also affect the amount of damage to the implants when under a load. The mechanical properties of the abutment should be considered when selecting a clinical design.

Metals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1106
Author(s):  
Fernández-Asián ◽  
Martínez-González ◽  
Torres-Lagares ◽  
Serrera-Figallo ◽  
Gutiérrez-Pérez

(1) Background: In today's dentistry, implantology has become a therapeutic resource of choice in certain clinical situations. The design of implants has evolved in several aspects since their inception. Dental implants were initially designed with an external hex connection, although due to force transmission and security in the adjustment of the prosthesis, later implants featured an internal hex connection. This study aims to analyse the mechanical properties of two types of implants (an internal connection and an external connection) from the same manufacturer and their different prosthetic components (union screw between implant and prosthetic abutment, and the abutment itself) when subjected to different types of load. (2) Materials and methods: Intraosseous dental implants of similar shape, design and size, although different in type of connection (external vs. internal), were studied. The specifications of the UNI EN ISO 14801 test standard were used, with all determinations being carried out three times. Finally, the dimensional characterisation of the samples analysed after the dynamic load study was carried out, and the values of both study groups were compared by means of the non-parametric Mann–Whitney U test to find statistically significant differences (p < 0.05). (3) Results: For the static characterisation test, we found between 610.9 N and 986.1 N for the external connection and between 1263.6 N and 1324 N for the internal connection (p = 0.011). All of the dynamic load tests were positive and there was no failure in any of the components studied. (4) Conclusions: After the analysis of the samples studied in vitro, satisfactory results were obtained, demonstrating that both connections can support considerable mechanical loads according to international standards (UNI EN ISO 14801).


Author(s):  
B. Leitão-Almeida ◽  
O. Camps-Font ◽  
A. Correia ◽  
J. Mir-Mari ◽  
R. Figueiredo ◽  
...  

Children ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 77
Author(s):  
AlWaleed Abushanan ◽  
Rajashekhara B. Sharanesha ◽  
Bader Aljuaid ◽  
Tariq Alfaifi ◽  
Abdullah Aldurayhim

In this study, we evaluated the fracture resistance of three commercially available prefabricated primary zirconia crowns and their correlation with dimensional variance. Methods: a total of 42 zirconia crowns were selected from three companies, (1) NuSmile primary zirconia crowns, (2) Cheng Crowns zirconia, and (3) Sprig EZ crowns. The crowns were divided into two groups based on their location in the oral cavity and further divided into subgroups based on the brand. All of the samples were subjected to fracture tests using a universal testing machine. Results: the mean load observed was highest with Cheng Crowns zirconia anterior crowns (1355 ± 484) and the least load was seen with Sprig EZ anterior crowns with a mean load of 339 ± 94. The mean load observed was highest with Cheng Crowns zirconia posterior crowns (1990 ± 485) followed by NuSmile posterior crowns and the least load was seen with Sprig EZ posterior crowns with a mean load of 661 ± 184. Conclusion: the Cheng crowns showed the highest fracture resistance amongst all three groups. Overall, the zirconia crowns (anterior and posterior) tested showed optimum mechanical properties to withstand the masticatory forces.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1234
Author(s):  
António Sérgio Silva ◽  
Aurora Carvalho ◽  
Pedro Barreiros ◽  
Juliana de Sá ◽  
Carlos Aroso ◽  
...  

Thermal and self-curing acrylic resins are frequently and versatilely used in dental medicine since they are biocompatible, have no flavor or odor, have satisfactory thermal qualities and polishing capacity, and are easy and fast. Thus, given their widespread use, their fracture resistance behavior is especially important. In this research work, we comparatively analyzed the fracture resistance capacity of thermo and self-curing acrylic resins in vitro. Materials and Methods: Five prosthesis bases were created for each of the following acrylic resins: Lucitone®, ProBase®, and Megacryl®, which were submitted to different forces through the use of the CS® Dental Testing Machine, usually mobilized in the context of fatigue tests. To this end, a point was defined in the center of the anterior edge of the aforementioned acrylic resin bases, for which the peak tended until a fracture occurred. Thermosetting resins were, on average, more resistant to fracture than self-curable resins, although the difference was not statistically significant. The thermosetting resins of the Lucitone® and Probase® brands demonstrated behavior that was more resistant to fracture than the self-curing homologues, although the difference was not statistically significant. Thermosetting resins tended to be, on average, more resistant to fracture and exhibited the maximum values for impact strength, compressive strength, tensile strength, hardness, and dimensional accuracy than self-curing resins, regardless of brand.


2021 ◽  
Vol 11 (12) ◽  
pp. 5324
Author(s):  
Maria Menini ◽  
Francesca Delucchi ◽  
Domenico Baldi ◽  
Francesco Pera ◽  
Francesco Bagnasco ◽  
...  

(1) Background: Intrinsic characteristics of the implant surface and the possible presence of endotoxins may affect the bone–implant interface and cause an inflammatory response. This study aims to evaluate the possible inflammatory response induced in vitro in macrophages in contact with five different commercially available dental implants. (2) Methods: one zirconia implant NobelPearl® (Nobel Biocare) and four titanium implants, Syra® (Sweden & Martina), Prama® (Sweden & Martina), 3iT3® (Biomet 3i) and Shard® (Mech & Human), were evaluated. After 4 h of contact of murine macrophage cells J774a.1 with the implants, the total RNA was extracted, transcribed to cDNA and the gene expression of the macrophages was evaluated by quantitative PCR (qPCR) in relation to the following genes: GAPDH, YWHAZ, IL1β, IL6, TNFα, NOS2, MMP-9, MMP-8 and TIMP3. The results were statistically analyzed and compared with negative controls. (3) Results: No implant triggered a significant inflammatory response in macrophages, although 3iT3 exhibited a slight pro-inflammatory effect compared to other samples. (4) Conclusions: All the samples showed optimal outcomes without any inflammatory stimulus on the examined macrophagic cells.


Sign in / Sign up

Export Citation Format

Share Document