scholarly journals Macrophagic Inflammatory Response Next to Dental Implants with Different Macro- and Micro-Structure: An In Vitro Study

2021 ◽  
Vol 11 (12) ◽  
pp. 5324
Author(s):  
Maria Menini ◽  
Francesca Delucchi ◽  
Domenico Baldi ◽  
Francesco Pera ◽  
Francesco Bagnasco ◽  
...  

(1) Background: Intrinsic characteristics of the implant surface and the possible presence of endotoxins may affect the bone–implant interface and cause an inflammatory response. This study aims to evaluate the possible inflammatory response induced in vitro in macrophages in contact with five different commercially available dental implants. (2) Methods: one zirconia implant NobelPearl® (Nobel Biocare) and four titanium implants, Syra® (Sweden & Martina), Prama® (Sweden & Martina), 3iT3® (Biomet 3i) and Shard® (Mech & Human), were evaluated. After 4 h of contact of murine macrophage cells J774a.1 with the implants, the total RNA was extracted, transcribed to cDNA and the gene expression of the macrophages was evaluated by quantitative PCR (qPCR) in relation to the following genes: GAPDH, YWHAZ, IL1β, IL6, TNFα, NOS2, MMP-9, MMP-8 and TIMP3. The results were statistically analyzed and compared with negative controls. (3) Results: No implant triggered a significant inflammatory response in macrophages, although 3iT3 exhibited a slight pro-inflammatory effect compared to other samples. (4) Conclusions: All the samples showed optimal outcomes without any inflammatory stimulus on the examined macrophagic cells.

2015 ◽  
Vol 41 (5) ◽  
pp. e183-e188 ◽  
Author(s):  
Aswini Kumar K ◽  
Vinaya Bhatt ◽  
Manilal Balakrishnan ◽  
Mohamed Hashem ◽  
Sajith Vellappally ◽  
...  

This study compared the surface topography, hydrophilicity, and bioactivity of titanium implants after 3 different surface treatments (sandblasting and acid etching, modified sandblasting and acid etching, and thermal oxidation) with those of machined implants. One hundred indigenously manufactured threaded titanium implants were subjected to 3 methods of surface treatment. The surface roughness of the nontreated (Group A) and treated samples (Groups B through D) was evaluated with a scanning electron microscope (SEM) and profilometer. The wettability was visually examined using a colored dye solution. The calcium ions attached to the implant surface after immersing in simulated body fluid (SBF) were assessed on days 1, 2, and 7 with an atomic electron spectroscope. The data were analyzed statistically. The SBF test allowed the precipitation of a calcium phosphate layer on all surface-treated samples, as evidenced in the SEM analysis. A significantly higher amount of calcium ions and increased wettability were achieved in the thermally oxidized samples. The mean roughness was significantly lower in Group A (0.85 ± 0.07) compared to Group B (1.35 ± 0.17), Group C (1.40 ± 0.14), and Group D (1.36 ± 0.18). The observations from this in vitro study indicated that surface treatment of titanium improved the bioactivity. Moreover, results identified the implants that were sandblasted, acid etched, and then oxidized attracted more calcium ions.


2020 ◽  
Author(s):  
Erica Tambone ◽  
Emiliana Bonomi ◽  
Paolo Ghensi ◽  
Devid Maniglio ◽  
Chiara Ceresa ◽  
...  

Abstract Background: Peri-implant mucositis and peri-implantitis are biofilm-related diseases causing major concern in oral implantology, requiring complex anti-infective procedures or implant removal. Microbial biosurfactants emerged as new of anti-biofilm agents for coating implantable devices preserving biocompatibility. This study aimed to assess the efficacy of rhamnolipid biosurfactant R89 (R89BS) to reduce Staphylococcus aureus and Staphylococcus epidermidis biofilm formation on titanium. Methods: R89BS was physically adsorbed on titanium discs (TDs) and the ability of coated TDs to inhibit biofilm formation was evaluated by quantifying biofilm biomass and cell metabolic activity, at different time-points, with respect to uncoated controls. A qualitative analysis of sessile cells was also performed by scanning electron microscopy. Results: R89BS-coated discs showed no cytotoxic effects on normal lung fibroblasts (MRC5). TDs coated with 4 mg/mL R89BS inhibited the biofilm biomass of S. aureus by 98%, 49% and 10% and of S. epidermidis by 53%, 29%, and 10% at 24, 48 and 72 h respectively. A significant reduction of the biofilm metabolic activity was also documented. The same coating applied on three commercial implant surfaces resulted in a biomass inhibition higher than 90% for S. aureus, and up to 75% for S. epidermidis at 24 h. Conclusions: R89BS-coating was effective in reducing Staphylococcus biofilm formation at the titanium implant surface. The anti-biofilm action can be obtained on several different commercially available implant surfaces, independently of their surface morphology.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Catherine X. Andrade ◽  
Marc Quirynen ◽  
David R. Rosenberg ◽  
Nelson R. Pinto

Background. Platelet concentrates like leucocyte- and platelet-rich fibrin (L-PRF) have been widely evaluated in different oral surgical procedures to promote the healing process. However, liquid L-PRF products such as liquid fibrinogen have been poorly explored, especially in the biomimetic functionalization of dental implants. The aim of this in vitro study is to evaluate the interaction between 5 different dental implant surfaces and liquid fibrinogen. Methods. Five commercially available dental implants with different surfaces (Osseospeed™, TiUnite™, SLActive®, Ossean®, and Plenum®) were immersed for 60 minutes in liquid fibrinogen obtained from healthy donors. After this period, the implants were removed and fixed for scanning electron microscopy (SEM). Results. All dental implants were covered by a fibrin mesh. However, noticeable noncontact areas were observed for the Osseospeed™, TiUnite™, and SLActive® surfaces. On the other hand, Ossean® and Plenum® surfaces showed a dense and uniform layer of fibrin covering almost the entire implant surface. The Osseospeed™, TiUnite™, and SLActive® surfaces presented with lower blood cell numbers inside the fibrin mesh compared with the others. Moreover, at higher magnification, thicker fibrin fibers were observed in contact with Ossean® and Plenum® surfaces. The Plenum ®surface showed the thickest fibers which also inserted and interconnect to the microroughness. Conclusion. The initial contact between an implant surface and the fibrin network differs significantly among different implant brands. Further studies are necessary to explore the clinical impact of these observations in the osseointegration process of dental implants.


2021 ◽  
Vol 21 (01) ◽  
pp. 2150004
Author(s):  
MEHDI MASHHADI ◽  
REZA HAMZELOO ◽  
MEGHDAD FALLAH

Selecting materials and alloys, fabrication methods, surface characteristics and coatings, and topology design, all affect the mechanical properties, biocompatibility, and functionality of dental implants. The success in embedding implants in mouth and improving biocompatibility and consequently useful life of implants depends directly on proper adhesion of tissue to implant surface of a biocompatible alloy. In this research, experimental surface hardness and in vitro tests are carried out on samples with different alloys and different manufacturing methods. Various fabrication techniques, such as machining and 3D printing (Selective laser melting (SLM)), are considered for steel and titanium specimens. Results show that the hardness values of specimens made by the SLM method are higher than machined samples about 8% and also stainless steels samples have higher hardness than titanium specimens. A comparison of scanning electron microscopy (SEM) surface pictures indicates that applying modern fabrication methods for production which includes SLM improves the performance of implants in terms of mechanical and biocompatibility by increasing cell adhesion up to 21 times. In addition, results indicate that titanium alloys have almost 13% higher adhesion property than stainless steel and generally exhibit a higher balance of adhesion and cell growth.


2014 ◽  
Vol 40 (2) ◽  
pp. 174-181 ◽  
Author(s):  
Dennis Flanagan

Frictional heat can be generated during seating of dental implants into a drill-prepared osteotomy. This in vitro study tested the heat generated by implant seating in dense bovine mandible ramus. A thermocouple was placed approximately 0.5 mm from the rim of the osteotomy during seating of each dental implant. Four diameters of implants were tested. The average temperature increases were 0.075°C for the 5.7-mm-diameter implant, 0.97°C for the 4.7-mm-diameter implant, 1.4°C for the 3.7-mm-diameter implant, and 8.6°C for the 2.5-mm-diameter implant. The results showed that heat was indeed generated and a small temperature rise occurred, apparently by the friction of the implant surface against the fresh-cut bone surface. Bone is a poor thermal conductor. The titanium of the implant and the steel of the handpiece are much better heat conductors. Titanium may be 70 times more heat conductive than bone. The larger diameter and displacement implant may act as a heat sink to draw away any heat produced from the friction of seating the implant at the bone-implant interface. The peak temperature duration was momentary, and not measured, but this was approximately less than 1 second. Except for the 2.5-mm-diameter implants, the temperature rises and durations were found to be below those previously deemed to be detrimental, so no clinically significant osseous damage would be expected during dental implant fixture seating of standard and large-diameter-sized implants. A 2.5-mm implant may generate detrimental heat during seating in nonvital bone, but this may be clinically insignificant in vital bone. The surface area and thermal conductivity are important factors in removing generated heat transfer at the bone-implant interface. The F value as determined by analysis of variance was 69.22, and the P value was less than .0001, demonstrating significant differences between the groups considered as a whole.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Fadi N. Barrak ◽  
Siwei Li ◽  
Albert M. Muntane ◽  
Julian R. Jones

Abstract Background With increasing numbers of dental implants placed annually, complications such as peri-implantitis and the subsequent periprosthetic osteolysis are becoming a major concern. Implantoplasty, a commonly used treatment of peri-implantitis, aims to remove plaque from exposed implants and reduce future microbial adhesion and colonisation by mechanically modifying the implant surface topography, delaying re-infection/colonisation of the site. This in vitro study aims to investigate the release of particles from dental implants and their effects on human gingival fibroblasts (HGFs), following an in vitro mock implantoplasty procedure with a diamond burr. Materials and methods Commercially available implants made from grade 4 (commercially pure, CP) titanium (G4) and grade 5 Ti-6Al-4 V titanium (G5) alloy implants were investigated. Implant particle compositions were quantified by inductively coupled plasma optical emission spectrometer (ICP-OES) following acid digestion. HGFs were cultured in presence of implant particles, and viability was determined using a metabolic activity assay. Results Microparticles and nanoparticles were released from both G4 and G5 implants following the mock implantoplasty procedure. A small amount of vanadium ions were released from G5 particles following immersion in both simulated body fluid and cell culture medium, resulting in significantly reduced viability of HGFs after 10 days of culture. Conclusion There is a need for careful evaluation of the materials used in dental implants and the potential risks of the individual constituents of any alloy. The potential cytotoxicity of G5 titanium alloy particles should be considered when choosing a device for dental implants. Additionally, regardless of implant material, the implantoplasty procedure can release nanometre-sized particles, the full systemic effect of which is not fully understood. As such, authors do not recommend implantoplasty for the treatment of peri-implantitis.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Erica Tambone ◽  
Emiliana Bonomi ◽  
Paolo Ghensi ◽  
Devid Maniglio ◽  
Chiara Ceresa ◽  
...  

Abstract Background Peri-implant mucositis and peri-implantitis are biofilm-related diseases causing major concern in oral implantology, requiring complex anti-infective procedures or implant removal. Microbial biosurfactants emerged as new anti-biofilm agents for coating implantable devices preserving biocompatibility. This study aimed to assess the efficacy of rhamnolipid biosurfactant R89 (R89BS) to reduce Staphylococcus aureus and Staphylococcus epidermidis biofilm formation on titanium. Methods R89BS was physically adsorbed on titanium discs (TDs). Cytotoxicity of coated TDs was evaluated on normal lung fibroblasts (MRC5) using a lactate dehydrogenase assay. The ability of coated TDs to inhibit biofilm formation was evaluated by quantifying biofilm biomass and cell metabolic activity, at different time-points, with respect to uncoated controls. A qualitative analysis of sessile bacteria was also performed by scanning electron microscopy. Results R89BS-coated discs showed no cytotoxic effects. TDs coated with 4 mg/mL R89BS inhibited the biofilm biomass of S. aureus by 99%, 47% and 7% and of S. epidermidis by 54%, 29%, and 10% at 24, 48 and 72 h respectively. A significant reduction of the biofilm metabolic activity was also documented. The same coating applied on three commercial implant surfaces resulted in a biomass inhibition higher than 90% for S. aureus, and up to 78% for S. epidermidis at 24 h. Conclusions R89BS-coating was effective in reducing Staphylococcus biofilm formation at the titanium implant surface. The anti-biofilm action can be obtained on several different commercially available implant surfaces, independently of their surface morphology.


2021 ◽  
Vol 22 (5) ◽  
pp. 2597
Author(s):  
Nagore Arroyo-Lamas ◽  
Iciar Arteagoitia ◽  
Unai Ugalde

Organic contaminants significantly limit the bioactivity of titanium implants, resulting in the degradation known as the ageing of titanium. To reactivate the surfaces, they can be photofunctionalized, i.e., irradiated with C-range ultraviolet (UVC) light. This descriptive in vitro study compares the effectiveness of novel light-emitting diode (LED) technology to remove contaminant hydrocarbons from three different commercially available titanium dental implants: THD, TiUnite, and SLA. The surface topography and morphology were characterized by scanning electron microscopy (SEM). The chemical compositions were analyzed by X-ray photoelectron spectroscopy (XPS), before and after the lighting treatment, by a pair of closely placed UVC (λ = 278 nm) and LED devices for 24 h. SEM analysis showed morphological differences at the macro- and micro-scopic level. XPS analysis showed a remarkable reduction in the carbon contents after the UVC treatment: from 25.6 to 19.5 C at. % (carbon atomic concentration) in the THD; from 30.2 to 20.2 C at. % in the TiUnite; from 26.1 to 19.2 C at. % in the SLA surface. Simultaneously, the concentration of oxygen and titanium increased. Therefore, LED-based UVC irradiation decontaminated titanium surfaces and improved the chemical features of them, regardless of the kind of surface.


2020 ◽  
Vol 8 (4) ◽  
pp. 109
Author(s):  
Ehsan Chegeni ◽  
Antonio España-Tost ◽  
Rui Figueiredo ◽  
Eduard Valmaseda-Castellón ◽  
Josep Arnabat-Domínguez

Peri-implant diseases are one of the main complications of dental implants. There are no well-established guidelines regarding laser parameters for implant decontamination. The aim was to compare two different settings of irradiation of the Er,Cr:YSGG laser on dental implants regarding surface alterations and determine the best settings for less damage on the surface. An in vitro study was performed and 30 areas of dental implants were irradiated with two different regimes of energy per pulse 50 and 84 mJ (1.5 W/30 Hz and 2.5 W/30 Hz). A total of 30 sites of implants were irradiated with three different tips (10 surfaces per tip): conical (RTF3-17 mm), side firing (SFT8-18 mm) and cylindrical (MGG6-6 mm). The following descriptive classification on surface damage was employed: no damage (class A), minimal effects (class B), metal fall with melting (class C), and destruction with carbonization (class D). The assessment was made through a descriptive scanning electron microscope (SEM) analysis. Side firing and conical tips at 50 mJ were classified as class A. Side firing at 84 mJ and cylindrical tips 50 mJ and 84 mJ were classified as class B. Finally, class C defects were found in the areas where the conical tip was used at 84 mJ. Side firing and conical tips at 50 mJ do not seem to damage the implant surface.


2021 ◽  
Author(s):  
Erica Tambone ◽  
Emiliana Bonomi ◽  
Paolo Ghensi ◽  
Devid Maniglio ◽  
Chiara Ceresa ◽  
...  

Abstract Background: Peri-implant mucositis and peri-implantitis are biofilm-related diseases causing major concern in oral implantology, requiring complex anti-infective procedures or implant removal. Microbial biosurfactants emerged as new anti-biofilm agents for coating implantable devices preserving biocompatibility. This study aimed to assess the efficacy of rhamnolipid biosurfactant R89 (R89BS) to reduce Staphylococcus aureus and Staphylococcus epidermidis biofilm formation on titanium. Methods: R89BS was physically adsorbed on titanium discs (TDs). Cytotoxicity of coated TDs was evaluated on normal lung fibroblasts (MRC5). using a lactate dehydrogenase assay. The ability of coated TDs to inhibit biofilm formation was evaluated by quantifying biofilm biomass and cell metabolic activity, at different time-points, with respect to uncoated controls. A qualitative analysis of sessile bacteria was also performed by scanning electron microscopy. Results: R89BS-coated discs showed no cytotoxic effects. TDs coated with 4 mg/mL R89BS inhibited the biofilm biomass of S. aureus by 99%, 47% and 7% and of S. epidermidis by 54%, 29%, and 10% at 24, 48 and 72 h respectively. A significant reduction of the biofilm metabolic activity was also documented. The same coating applied on three commercial implant surfaces resulted in a biomass inhibition higher than 90% for S. aureus, and up to 78% for S. epidermidis at 24 h. Conclusions: R89BS-coating was effective in reducing Staphylococcus biofilm formation at the titanium implant surface. The anti-biofilm action can be obtained on several different commercially available implant surfaces, independently of their surface morphology.


Sign in / Sign up

Export Citation Format

Share Document