scholarly journals Effect of Strain Rate Sensitivity on Fracture of Laminated Rings under Dynamic Compressive Loading

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 472
Author(s):  
Amir Partovi ◽  
Mohammad Mehdi Shahzamanian ◽  
Peidong Wu

The effects of cladding layers of rate-sensitive materials on the ductility and fracture strain of compressed rings are numerically investigated by using the finite element method (FEM) and employing the Johnson–Cook (J–C) model. The results show that ductility is governed by the behavior of the material that is located at the ring outer wall regardless of the volume fraction of the core and clad materials. However, as the number of layers increases, this influence becomes less noticeable. Moreover, as barreling increases at the outer wall and decreases at the inner wall, fracture strain increases. Furthermore, the effects of ring shape factor and bonding type of clad and core materials are numerically evaluated. The numerical results show that less force per unit volume is required to fracture narrower rings and that using a noise diffusion pattern at the interface of the materials is more suitable to simulate crack propagation in the compressed rings and functionally graded materials (FGMs). Additionally, delamination has a direct relation to layer thickness and can occur even in the presence of perfect bonding conditions owing to differences among the material and fracture parameters of laminated layers.

1999 ◽  
Author(s):  
J. W. Gao ◽  
S. J. White ◽  
C. Y. Wang

Abstract A combined experimental and numerical investigation of the solidification process during gravity casting of functionally graded materials (FGMs) is conducted. Focus is placed on the interplay between the freezing front propagation and particle sedimentation. Experiments were performed in a rectangular ingot using pure substances as the matrix and glass beads as the particle phase. The time evolutions of local particle volume fractions were measured by bifurcated fiber optical probes working in the reflection mode. The effects of various processing parameters were explored. It is found that there exists a particle-free zone in the top portion of the solidified ingot, followed by a graded particle distribution region towards the bottom. Higher superheat results in slower solidification and hence a thicker particle-free zone and a higher particle concentration near the bottom. The higher initial particle volume fraction leads to a thinner particle-free region. Lower cooling temperatures suppress particle settling. A one-dimensional solidification model was also developed, and the model equations were solved numerically using a fixed-grid, finite-volume method. The model was then validated against the experimental results, and the validated computer code was used as a tool for efficient computational prototyping of an Al/SiC FGM.


2006 ◽  
Vol 74 (5) ◽  
pp. 861-874 ◽  
Author(s):  
Florin Bobaru

We present a numerical approach for material optimization of metal-ceramic functionally graded materials (FGMs) with temperature-dependent material properties. We solve the non-linear heterogeneous thermoelasticity equations in 2D under plane strain conditions and consider examples in which the material composition varies along the radial direction of a hollow cylinder under thermomechanical loading. A space of shape-preserving splines is used to search for the optimal volume fraction function which minimizes stresses or minimizes mass under stress constraints. The control points (design variables) that define the volume fraction spline function are independent of the grid used in the numerical solution of the thermoelastic problem. We introduce new temperature-dependent objective functions and constraints. The rule of mixture and the modified Mori-Tanaka with the fuzzy inference scheme are used to compute effective properties for the material mixtures. The different micromechanics models lead to optimal solutions that are similar qualitatively. To compute the temperature-dependent critical stresses for the mixture, we use, for lack of experimental data, the rule-of-mixture. When a scalar stress measure is minimized, we obtain optimal volume fraction functions that feature multiple graded regions alternating with non-graded layers, or even non-monotonic profiles. The dominant factor for the existence of such local minimizers is the non-linear dependence of the critical stresses of the ceramic component on temperature. These results show that, in certain cases, using power-law type functions to represent the material gradation in FGMs is too restrictive.


2013 ◽  
Vol 315 ◽  
pp. 867-871 ◽  
Author(s):  
Saifulnizan Jamian ◽  
Hisashi Sato ◽  
Hideaki Tsukamoto ◽  
Yoshimi Watanabe

In this paper, creep analysis for a thick-walled cylinder made of functionally graded materials (FGMs) subjected to thermal and internal pressure is carried out. The structure is replaced by a system of discrete rectangular cross-section ring elements interconnected along circumferential nodal circles. The property of FGM is assumed to be continuous function of volume fraction of material composition. The creep behavior of the structures is obtained by the use of an incremental approach. The obtained results show that the property of FGM significantly influences the stress distribution along the radial direction of the thick-walled cylinder as a function of time.


2010 ◽  
Vol 19 (2) ◽  
pp. 096369351001900 ◽  
Author(s):  
F. Ebrahimi ◽  
H.A. Sepiani

In this study, a formulation for the free vibration and buckling of cylindrical shells made of functionally graded material (FGM) subjected to combined static and periodic axial loadings are presented. The properties are temperature dependent and graded in the thickness direction according to a volume fraction power law distribution. The analysis is based on two different methods of first-order shear deformation theory (FSDT) considering the transverse shear strains and the rotary inertias and the classical shell theory (CST). The results obtained show that the effect of transverse shear and rotary inertias on vibration and buckling of functionally graded cylindrical shells is dependent on the material composition, the temperature environment, the amplitude of static load, the deformation mode, and the shell geometry parameters.


Author(s):  
Ali Nikbakht ◽  
Alireza Fallahi Arezoodar ◽  
Mojtaba Sadighi ◽  
Ali Tale Zadeh Lari

Graded materials, also known as functionally graded materials (FGMs), are multiphase composites mainly composed of a ceramic and a metal; thus, they exploit the heat, oxidation and corrosion resistance typical of ceramics, and the strength, ductility and toughness typical of metals. These materials are mainly used as heat barriers. In addition, many of the present and potential applications of FGMs involve contact problems. On the other hand, the production process of FGMs is somewhat complex and leaves some defects in the produced structure. One of the most important defects in such structures is surface cracks. Here, the combination of the contact and crack problems is investigated in a functionally graded rectangular plate containing a semi–elliptic surface crack indented by a frictionless rigid spherical indenter. The plate is simply supported and the crack is located in the middle of the plate surface in the tension part. The crack surface is parallel to one of the plate edges. The gradient of mechanical properties variation is considered through the thickness of the plate and the volume fraction distribution of the constituting phases is modeled by a polynomial function and the Poisson’s ratio is kept constant. The analyzing of the problem is divided into two steps. At the first step, for an uncracked plate the equations of equilibrium are derived in terms of the displacement field and are solved numerically to find the contact rule. As the second step in studying the problem, the contact problem of a cracked plate is modeled by using ABAQUS finite element package. The aim of this step is to find the effect of the presence of the crack on the contact rule. The optimum mesh for the ABAQUS model is found by using the results of the first step. In order to do so, an ABAQUS model is created for the uncracked plate. The analytical results and the obtained results from ABAQUS for specified plate and indenter dimensions and material properties are compared. After finding the optimum mesh, a crack is added to the ABAQUS model of the plate under contact loading. The effects of gradient changes and indenter dimensions on the contact rule and stress distribution at the crack tip are then investigated by using the obtained ABAQUS model. The acquired results show that the influence of the material nonhomogeneity on the stress distribution around the crack tip and in the plate (uncracked and cracked) and contact rule can be quite significant. In general, increasing the overall volume fraction of the metal phase increases the load carrying capacity in an uncracked plate. In a cracked plate, the changes in material distribution as well as the changes of the indenter diameter does not affect the results that much.


2011 ◽  
Vol 130-134 ◽  
pp. 3986-3993 ◽  
Author(s):  
Yu Xin Hao ◽  
Wei Zhang ◽  
L. Yang ◽  
J.H. Wang

An analysis on the nonlinear dynamics of a cantilever functionally graded materials (FGM) cylindrical shell subjected to the transversal excitation is presented in thermal environment.Material properties are assumed to be temperature-dependent. Based on the Reddy’s first-order shell theory,the nonlinear governing equations of motion for the FGM cylindrical shell are derived using the Hamilton’s principle. The Galerkin’s method is utilized to discretize the governing partial equations to a two-degree-of-freedom nonlinear system including the quadratic and cubic nonlinear terms under combined external excitations. It is our desirable to choose a suitable mode function to satisfy the first two modes of transverse nonlinear oscillations and the boundary conditions for the cantilever FGM cylindrical shell. Numerical method is used to find that in the case of non-internal resonance the transverse amplitude are decreased by increasing the volume fraction index N.


Author(s):  
Saeed Rouhi ◽  
Seyed H Alavi

In this paper, the elastic properties of functionally graded materials reinforced by single-walled carbon nanotubes are studied. Three different matrices, including steel-silicon, iron-alumina and alumina-zirconia are considered. Besides, the effects of nanotube length, radius and volume fraction on the Young’s modulus of functionally graded matrices reinforced by single-walled carbon nanotubes are investigated. It is observed that short nanotubes not only cannot increase the longitudinal elastic modulus of the matrices, but sometimes decrease their elastic modulus. Of the three selected matrices, steel-silicon matrix would have the most enhancement. Investigation of the effect of nanotube volume fraction on the mechanical properties of nanocomposites shows that increasing the volume fraction of long single-walled carbon nanotube results in increasing the elastic modulus of the nanocomposites.


2005 ◽  
Vol 475-479 ◽  
pp. 1503-1506 ◽  
Author(s):  
Koichi Matsuda ◽  
Yoshimi Watanabe ◽  
Kazuhisa Yamagiwa ◽  
Yasuyoshi Fukui

Near net shape forming of Al-Al3Fe functionally graded materials (FGMs) have been studied. FGM billets fabricated by a centrifugal method were extruded under the condition of a mixture of molten Al eutectic and solid Al3Fe particles. Both distribution and profile of Al3Fe particles were characterized by and the variation of volume fraction of Al3Fe particles was observed. Shore hardness of the Al matrix was also measured to evaluate the strength of the FGM before and after the semi-solid forming associated with the character of distributed Al3Fe particles. It was confirmed that Shore hardness increased with increasing the volume fraction of Al3Fe particles and after the semi-solid forming than before. This was due to the fact that Al3Fe particles after the semi-solid forming became fine by shear stress introduced by liquid Al flow.


2016 ◽  
Vol 829 ◽  
pp. 90-94
Author(s):  
Seok Hyeon Kang ◽  
Ji Hwan Kim

In thermal environment, vibration behavior of Functionally Graded Materials (FGMs) plates is investigated, and the materials are developed with mixing ceramic and metal. Present study is based on the first-order shear deformation theory of plate. Then, mixture methods such as Power law (P-) and Sigmoid (S-) models are chosen. According to a volume fraction, the material properties are assumed to vary continuously through the thickness direction and to be temperature dependent properties. Further, thermal effects are considered as uniform temperature rise and one dimensional heat transfer. For the structure analysis, FEM is used to obtain the natural frequencies based on the virtual work principle.


Sign in / Sign up

Export Citation Format

Share Document