scholarly journals The Deterministic Nature of Sensor-Based Information for Condition Monitoring of the Cutting Process

Machines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 270
Author(s):  
Rui Silva ◽  
António Araújo

Condition monitoring of the cutting process is a core function of autonomous machining and its success strongly relies on sensed data. Despite the enormous amount of research conducted so far into condition monitoring of the cutting process, there are still limitations given the complexity underlining tool wear; hence, a clearer understanding of sensed data and its dynamical behavior is fundamental to sustain the development of more robust condition monitoring systems. The dependence of these systems on acquired data is critical and determines the success of such systems. In this study, data is acquired from an experimental setup using some of the commonly used sensors for condition monitoring, reproducing realistic cutting operations, and then analyzed upon their deterministic nature using different techniques, such as the Lyapunov exponent, mutual information, attractor dimension, and recurrence plots. The overall results demonstrate the existence of low dimensional chaos in both new and worn tools, defining a deterministic nature of cutting dynamics and, hence, broadening the available approaches to tool wear monitoring based on the theory of chaos. In addition, recurrence plots depict a clear relationship to tool condition and may be quantified considering a two-dimensional structural measure, such as the semivariance. This exploratory study unveils the potential of non-linear dynamics indicators in validating information strength potentiating other uses and applications.

2013 ◽  
Vol 572 ◽  
pp. 467-470 ◽  
Author(s):  
Jabbar Abbas ◽  
Amin Al-Habaibeh ◽  
Dai Zhong Su

Surface finish of machined parts in end milling operations is significantly influenced by process faults such as tool wear and tool holding (fixturing system). Therefore, monitoring these faults is considerably important to improve the quality of the product. In this paper, an investigation is presented to design the condition monitoring system to evaluate the surface roughness of the workpiece under effects of gradual tool wear and different types of the fixturing system. Automated Sensor and Signal Processing Selection (ASPS) approach is implemented and tested to determine the sensitivity of the sensory signals to estimate surface roughness under the variable conditions in comparison to surface roughness measurement device. The results indicate that the system is capable of detection the change and the trend in surface roughness. However, the sensitive features are found to be different based on the change in the fixturing system.


2009 ◽  
Vol 419-420 ◽  
pp. 381-384 ◽  
Author(s):  
Amin Al-Habaibeh ◽  
A. Al-Azmi ◽  
N. Radwan ◽  
Yang Song

Condition monitoring systems of manufacturing processes have been recognised in recent years as one of the key technologies that provide the competitive advantage in many manufacturing environments. It is capable of providing an essential means to reduce cost, increase productivity, improve quality and prevent damage to the machine or work-piece. Turning operations are considered one of the most common manufacturing processes in industry. Despite recent development and intensive engineering research, the development of tool wear monitoring systems in turning is still on-going challenge. In this paper, force and acoustic emission signals are used for monitoring tool wear in a feature fusion model. The results prove that the developed system can be used to enhance the design of condition monitoring systems for turning operations to predict tool wear or damage.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 108
Author(s):  
Mustafa Kuntoğlu ◽  
Abdullah Aslan ◽  
Danil Yurievich Pimenov ◽  
Üsame Ali Usca ◽  
Emin Salur ◽  
...  

The complex structure of turning aggravates obtaining the desired results in terms of tool wear and surface roughness. The existence of high temperature and pressure make difficult to reach and observe the cutting area. In-direct tool condition, monitoring systems provide tracking the condition of cutting tool via several released or converted energy types, namely, heat, acoustic emission, vibration, cutting forces and motor current. Tool wear inevitably progresses during metal cutting and has a relationship with these energy types. Indirect tool condition monitoring systems use sensors situated around the cutting area to state the wear condition of the cutting tool without intervention to cutting zone. In this study, sensors mostly used in indirect tool condition monitoring systems and their correlations between tool wear are reviewed to summarize the literature survey in this field for the last two decades. The reviews about tool condition monitoring systems in turning are very limited, and relationship between measured variables such as tool wear and vibration require a detailed analysis. In this work, the main aim is to discuss the effect of sensorial data on tool wear by considering previous published papers. As a computer aided electronic and mechanical support system, tool condition monitoring paves the way for machining industry and the future and development of Industry 4.0.


2011 ◽  
Vol 223 ◽  
pp. 66-74 ◽  
Author(s):  
Takashi Matsumura

Multi-axis controlled machining has been increasing with the demand for high quality in mold manufacturing. The cutter axis inclination should be properly determined in the milling operations. The paper discusses the cutting process of ball end mill with the cutter axis inclination. Two mechanistic models are presented to show the effect of the cutter axis inclination on the tool wear and the surface finish. The actual cutting time during a rotation of the cutter reduces with increasing the cutter axis inclination. Then, the tool is cooled in the non-cutting time. The tool wear is suppressed with reducing the cutting temperature. The surface finish is also improved by increasing cutting velocities with the cutter axis inclination. When the cutter is inclined in the feed direction, the effect of the edge roughness on the surface finish is eliminated. The discussion based on the simulation is verified in the cutting tests for brittle materials.


2000 ◽  
Author(s):  
Ming-Chyuan Lu ◽  
Elijah Kannatey-Asibu

Abstract Ramp-up is a major step in the implementation of manufacturing systems, and is even more critical in reconfigurable manufacturing systems. For a successful reduction in ramp-up time, it is essential to analyze and monitor both the overall manufacturing system and the individual machine tools/processes that comprise the system. Towards this end, we have addressed the issue of monitoring tool wear using audible sound to enable faulty conditions associated with wear to be identified during the process before the part quality gets out of specification. Audible sound generated from the cutting process is analyzed as a source for monitoring tool wear during turning, assuming adhesive wear as the predominant wear mechanism. The analysis incorporates the dynamics of the cutting process. In modeling the interaction on the flank surface, the asperities on the surfaces are represented as a trapezoidal series function with normal distribution. The effect of changing asperity height, size, spacing, and the stiffness of the asperity interaction is investigated and compared with experimental data.


Author(s):  
Bogdan Leu ◽  
Bogdan-Adrian Enache ◽  
Florin-Ciprian Argatu ◽  
Marilena Stanculescu

Sign in / Sign up

Export Citation Format

Share Document