scholarly journals Modeling the Dynamics of a Gyroscopic Rigid Rotor with Linear and Nonlinear Damping and Nonlinear Stiffness of the Elastic Support

Machines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 276
Author(s):  
Zharilkassin Iskakov ◽  
Kuatbay Bissembayev ◽  
Nutpulla Jamalov ◽  
Azizbek Abduraimov

This study analytically and numerically modeled the dynamics of a gyroscopic rigid rotor with linear and nonlinear cubic damping and nonlinear cubic stiffness of an elastic support. It has been shown that (i) joint linear and nonlinear cubic damping significantly suppresses the vibration amplitude (including the maximum) in the resonant velocity region and beyond it, and (ii) joint linear and nonlinear cubic damping more effectively affects the boundaries of the bistability region by its narrowing than linear damping. A methodology is proposed for determining and identifying the coefficients of nonlinear stiffness, linear damping, and nonlinear cubic damping of the support material, where jump-like effects are eliminated. Damping also affects the stability of motion; if linear damping shifts the left boundary of the instability region towards large amplitudes and speeds of rotation of the shaft, then nonlinear cubic damping can completely eliminate it. The varying amplitude (VAM) method is used to determine the nature of the system response, supplemented with the concept of “slow” time, which allows us to investigate and analyze the effect of nonlinear cubic damping and nonlinear rigidity of cubic order on the frequency response at a nonstationary resonant transition.

Author(s):  
S. K. Kakoty ◽  
S. K. Laha ◽  
P. Mallik

A theoretical analysis has been carried out to determine the stability of rigid rotor supported on two symmetrical finite two-layered porous oil journal bearings. The stability curves have been drawn for different eccentricity ratios and Sommerfeld numbers. The effect of bearing feeding parameter, L/D ratio on the stability is also investigated. This paper also deals with a theoretical investigation of stability using a non-linear transient method. This analysis gives the journal centre locus and from this the system stability can be determined. With the help of graphics, several trajectories of the journal centre have been obtained for different operating conditions. Finally a comparison between single-layered porous bearing and the two-layered porous bearing is presented here.


Processes ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 718 ◽  
Author(s):  
Yong Zhu ◽  
Shengnan Tang ◽  
Chuan Wang ◽  
Wanlu Jiang ◽  
Xiaoming Yuan ◽  
...  

As the core control system of a rolling mill, the hydraulic automatic gauge control (HAGC) system is key to ensuring a rolling process with high speed, high precision and high reliability. However, a HAGC system is typically a mechanical-electric-hydraulic coupling system with nonlinear characteristics. The vertical vibration of the load easily occurs during the working process, which seriously affects the stability of the system and the causes are difficult to determine. In this work, the theory and method of nonlinear dynamics were employed. The load vertical vibration model of the HAGC system was established. Then, the multi-scale method was utilized to solve the obtained model, and the singularity theory was further applied to derive the transition set. Moreover, the research object of this article focused on some nonlinear factors such as excitation force, elastic force and damping force. The effects of the above feature parameters on bifurcation behavior were emphatically explored. The bifurcation characteristic of the load vertical vibration of the HAGC system was revealed. The research results indicate that the bifurcation curves in each sub-region, divided by the transition set, possess their own topological structure. The changes of the feature parameters, such as the nonlinear stiffness coefficient, liquid column height, nonlinear damping coefficient, and external excitation have an influence on the vibration amplitude of the HAGC system. By reasonably adjusting the nonlinear stiffness coefficient to effectively avoid the resonance region, the stability of the system will be facilitated. Furthermore, this is conducive to the system’s stability as it properly controls the size of the liquid column height of the hydraulic cylinder. The appropriate nonlinear damping coefficient can decrease the unstable area, which is beneficial to the stability of the system. However, large external excitation is not conducive to the stability of the system.


2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Samuel F. Asokanthan ◽  
Soroush Arghavan ◽  
Mohamed Bognash

Effect of stochastic fluctuations in angular velocity on the stability of two degrees-of-freedom ring-type microelectromechanical systems (MEMS) gyroscopes is investigated. The governing stochastic differential equations (SDEs) are discretized using the higher-order Milstein scheme in order to numerically predict the system response assuming the fluctuations to be white noise. Simulations via Euler scheme as well as a measure of largest Lyapunov exponents (LLEs) are employed for validation purposes due to lack of similar analytical or experimental data. The response of the gyroscope under different noise fluctuation magnitudes has been computed to ascertain the stability behavior of the system. External noise that affect the gyroscope dynamic behavior typically results from environment factors and the nature of the system operation can be exerted on the system at any frequency range depending on the source. Hence, a parametric study is performed to assess the noise intensity stability threshold for a number of damping ratio values. The stability investigation predicts the form of threshold fluctuation intensity dependence on damping ratio. Under typical gyroscope operating conditions, nominal input angular velocity magnitude and mass mismatch appear to have minimal influence on system stability.


2006 ◽  
Vol 17 (01) ◽  
pp. 65-73 ◽  
Author(s):  
SHIRO SAWADA

The optimal velocity model which depends not only on the headway but also on the relative velocity is analyzed in detail. We investigate the effect of considering the relative velocity based on the linear and nonlinear analysis of the model. The linear stability analysis shows that the improvement in the stability of the traffic flow is obtained by taking into account the relative velocity. From the nonlinear analysis, the relative velocity dependence of the propagating kink solution for traffic jam is obtained. The relation between the headway and the velocity and the fundamental diagram are examined by numerical simulation. We find that the results by the linear and nonlinear analysis of the model are in good agreement with the numerical results.


Sign in / Sign up

Export Citation Format

Share Document